Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/130965
Title: | Water quality and quantity assessment of pervious pavements performance in experimental car park areas | Authors: | Sañudo-Fontaneda, Luis A. Charlesworth, Susanne M. Castro-Fresno, Daniel Andres Valeri, Valerio Carlos Rodriguez-Hernandez, Jorge |
UNESCO Clasification: | 330506 Ingeniería civil 330515 Ingeniería hidráulica |
Keywords: | Infiltration Permeable surfaces Stormwater SUDS |
Issue Date: | 2014 | Journal: | Water Science and Technology | Abstract: | Pervious pavements have become one of the most used sustainable urban drainage system (SUDS) techniques in car parks. This research paper presents the results of monitoring water quality from several experimental car park areas designed and constructed in Spain with bays made of interlocking concrete block pavement, porous asphalt, polymer-modified porous concrete and reinforced grass with plastic and concrete cells. Moreover, two different sub-base materials were used (limestone aggregates and basic oxygen furnace slag). This study therefore encompasses the majority of the materials used as permeable surfaces and sub-base layers all over the world. Effluent from the test bays was monitored for dissolved oxygen, pH, electric conductivity, total suspended solids, turbidity and total petroleum hydrocarbons in order to analyze the behaviour shown by each combination of surface and sub-base materials. In addition, permeability tests were undertaken in all car parks using the 'Laboratorio Caminos Santander' permeameter and the Cantabrian Portable Infiltrometer. All results are presented together with the influence of surface and sub-base materials on water quality indicators using bivariate correlation statistical analysis at a confidence level of 95%. The polymer-modified porous concrete surface course in combination with limestone aggregate subbase presented the best performance. © IWA Publishing 2014. | URI: | http://hdl.handle.net/10553/130965 | ISSN: | 0273-1223 | DOI: | 10.2166/wst.2014.056 | Source: | Water Science and Technology [ISSN 0273-1223], v. 69 (7), p. 1526–1533 (Enero 2014) |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
42
checked on Nov 17, 2024
WEB OF SCIENCETM
Citations
41
checked on Nov 17, 2024
Page view(s)
34
checked on Sep 28, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.