Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130667
Campo DC Valoridioma
dc.contributor.authorGómez Déniz, Luisen_US
dc.contributor.authorVitale, S.en_US
dc.contributor.authorFerraioli, G.en_US
dc.contributor.authorPascazio, V.en_US
dc.date.accessioned2024-05-27T09:39:43Z-
dc.date.available2024-05-27T09:39:43Z-
dc.date.issued2023en_US
dc.identifier.issn2153-6996en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/130667-
dc.description.abstractSAR (Synthetic Aperture Radar) sensors are fundamental tools for the Earth Observation. Actually, SAR images are affected by a multiplicative noise speckle that require a filtering step crucial for further application: classification, detection, etc. As in all image processing task, deep learning has been widely used for SAR image despeckling in the last years. Many methods have been proposed with different architectures, cost functions, training approaches, showing impressive performance. Actually, differently from natural domain denoising, an extensive comparison of such methods is still missing. As matter fact, such methods focus their comparison on few testing images. The aim of this paper is to propose and carry out the comparison among DL (Deep Learning) based methods not only in the testing phase but explointg the validation dataset used during the training for evaluating performance on SAR based metrics. The aim is to give an assessment on a more wide scenarios.en_US
dc.languageengen_US
dc.relation.ispartofIEEE International Geoscience and Remote Sensing Symposium proceedingsen_US
dc.sourceIEEE International Geoscience And Remote Sensing Symposium[ISSN 2153-6996], p. 715-717, (2023)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherSaren_US
dc.subject.otherDeep Learningen_US
dc.subject.otherDespecklingen_US
dc.subject.otherRestorationen_US
dc.titleAssessment Of Deep Learning Based Solutions For Sar Image Despecklingen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.identifier.doi10.1109/IGARSS52108.2023.10282189en_US
dc.identifier.isi001098971601005-
dc.description.lastpage717en_US
dc.description.firstpage715en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid55952894-
dc.contributor.daisngid5958708-
dc.contributor.daisngid14975633-
dc.contributor.daisngid54602954-
dc.description.numberofpages3en_US
dc.utils.revisionNoen_US
dc.contributor.wosstandardWOS:Gomez, LD-
dc.contributor.wosstandardWOS:Vitale, S-
dc.contributor.wosstandardWOS:Ferraioli, G-
dc.contributor.wosstandardWOS:Pascazio, V-
dc.date.coverdate2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-0667-2302-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameGómez Déniz, Luis-
Colección:Actas de congresos
Vista resumida

Visitas

43
actualizado el 31-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.