Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130584
Campo DC Valoridioma
dc.contributor.authorMorel, Jean-Daviden_US
dc.contributor.authorMorel,Jean-Michelen_US
dc.contributor.authorÁlvarez León, Luis Miguelen_US
dc.date.accessioned2024-05-20T18:13:42Z-
dc.date.available2024-05-20T18:13:42Z-
dc.date.issued2023en_US
dc.identifier.issn1553-734Xen_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/130584-
dc.description.abstractThe most common reported epidemic time series in epidemiological surveillance are the daily or weekly incidence of new cases, the hospital admission count, the ICU admission count, and the death toll, which played such a prominent role in the struggle to monitor the Covid-19 pandemic. We show that pairs of such curves are related to each other by a generalized renewal equation depending on a smooth time varying delay and a smooth ratio generalizing the reproduction number. Such a functional relation is also explored for pairs of simultaneous curves measuring the same indicator in two neighboring countries. Given two such simultaneous time series, we develop, based on a signal processing approach, an efficient numerical method for computing their time varying delay and ratio curves, and we verify that its results are consistent. Indeed, they experimentally verify symmetry and transitivity requirements and we also show, using realistic simulated data, that the method faithfully recovers time delays and ratios. We discuss several real examples where the method seems to display interpretable time delays and ratios. The proposed method generalizes and unifies many recent related attempts to take advantage of the plurality of these health data across regions or countries and time, providing a better understanding of the relationship between them. An implementation of the method is publicly available at the EpiInvert CRAN package.To monitor an epidemic, it is crucial to understand the relationship between the incidence of new cases, the hospital admission count, the ICU admission count, and the death toll time series. The relationship between any pair of such indicators can be formulated in terms of temporal delays and ratios which evolve across time. Given two such time series, we develop, based on a signal processing approach, an efficient numerical method for computing their time varying delay and ratio curves. Using realistic simulated data, we show that the method faithfully recovers time delays and ratios. In addition, we discuss several applications to real epidemic data where the method seems to output interpretable time delays and ratios. The obtained relationship between these epidemic time series is a key issue in epidemiological surveillance. The proposed technique provides a new tool to visualize, compare, and understand the evolution of key epidemiological time series. An implementation of the method is publicly available at the EpiInvert CRAN package.en_US
dc.languageengen_US
dc.relation.ispartofPLoS Computational Biologyen_US
dc.sourcePlos Computational Biology[ISSN 1553-734X],v. 19 (12), (Diciembre 2023)en_US
dc.subject32 Ciencias médicasen_US
dc.subject3202 Epidemologiaen_US
dc.subject.otherAlignmenten_US
dc.subject.otherCurvesen_US
dc.titleTime warping between main epidemic time series in epidemiological surveillanceen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1371/journal.pcbi.1011757en_US
dc.identifier.isi001143480200003-
dc.identifier.eissn1553-7358-
dc.identifier.issue12-
dc.relation.volume19en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.contributor.daisngid15936225-
dc.contributor.daisngid150073-
dc.contributor.daisngid3937443-
dc.description.numberofpages24en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Morel, JD-
dc.contributor.wosstandardWOS:Morel, JM-
dc.contributor.wosstandardWOS:Alvarez, L-
dc.date.coverdateDiciembre 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr1,652
dc.description.jcr4,3
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,7
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR Modelos Matemáticos-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-6953-9587-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgDepartamento de Informática y Sistemas-
crisitem.author.fullNameMorel,Jean-Michel-
crisitem.author.fullNameÁlvarez León, Luis Miguel-
Colección:Artículos
Adobe PDF (4,71 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.