Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130557
Título: Analysis of variables to determine their influence on renewable energy forecasting using ensemble methods
Autores/as: Travieso-González, Carlos M. 
Celada Bernal, Sergio 
Lomoschitz, Alejandro 
Cabrera-Quintero, Fidel 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Ensemble Methods
Machine Learning
Neural Networks
Renewable Energy
Solar Energy
Fecha de publicación: 2024
Publicación seriada: Heliyon 
Resumen: Forecasting is of great importance in the field of renewable energies because it allows us to know the quantity of energy that can be produced, and thus, to have an efficient management of energy sources. However, determining which prediction system is more adequate is very complex, as each energy infrastructure is different. This work studies the influence of some variables when making predictions using ensemble methods for different locations. In particular, the proposal analyzes the influence of the aspects: the variation of the sampling frequency of solar panel systems, the influence of the type of neural network architecture and the number of ensemble method blocks for each model. Following comprehensive experimentation across multiple locations, our study has identified the most effective solar energy prediction model tailored to the specific conditions of each energy infrastructure. The results offer a decisive framework for selecting the optimal system for accurate and efficient energy forecasting. The key point is the use of short time intervals, which is independent of type of prediction model and of their ensemble method.
URI: http://hdl.handle.net/10553/130557
ISSN: 2405-8440
DOI: 10.1016/j.heliyon.2024.e30002
Fuente: Heliyon[ISSN 2405-8440],v. 10 (9), (Mayo 2024)
Colección:Artículos
Adobe PDF (9,69 MB)
Vista completa

Visitas

85
actualizado el 09-nov-2024

Descargas

35
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.