Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130190
Campo DC Valoridioma
dc.contributor.authorFerreira, Jodavid A.-
dc.contributor.authorRodrigues, Anny K.G.-
dc.contributor.authorOspina, Raydonal-
dc.contributor.authorGomez, Luis-
dc.date.accessioned2024-05-07T09:13:20Z-
dc.date.available2024-05-07T09:13:20Z-
dc.date.issued2024-
dc.identifier.issn0001-3765-
dc.identifier.otherScopus-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/130190-
dc.description.abstractIn this work, we focus on obtaining insights of the performances of some well-known machine learning image classification techniques (k-NN, Support Vector Machine, randomized decision tree and one based on stochastic distances) for PolSAR (Polarimetric Synthetic Aperture Radar) imagery. We test the classifiers methods on a set of actual PolSAR data and provide some conclusions. The aim of this work is to show that suitable adapted standard machine learning methods offer excellent performances vs. computational complexity trade-off for PolSAR image classification. In this work, we evaluate well-known machine learning techniques for PolSAR (Polarimetric Synthetic Aperture Radar) image classification, including K-Nearest Neighbors (KNN), Support Vector Machine (SVM), randomized decision tree, and a method based on the Kullback-Leibler stochastic distance. Our experiments with real PolSAR data show that standard machine learning methods, when adapted appropriately, offer a favourable trade-off between performance and computational complexity. The KNN and SVM perform poorly on these data, likely due to their failure to account for the inherent speckle presence and properties of the studied reliefs. Overall, our findings highlight the potential of the Kullback-Leibler stochastic distance method for PolSAR image classification.-
dc.languageeng-
dc.relation.ispartofAnais da Academia Brasileira de Ciências (Impresso)-
dc.sourceAnais da Academia Brasileira de Ciencias[EISSN 1678-2690],v. 96 (1), (Enero 2024)-
dc.subject33 Ciencias tecnológicas-
dc.subject.otherDivergence-
dc.subject.otherImagery-
dc.subject.otherVector-
dc.subject.otherModel-
dc.subject.otherSpeckle-
dc.subject.otherClassification-
dc.subject.otherPolsar-
dc.subject.otherMachine Learning-
dc.subject.otherKullback-Leibler-
dc.titleMachine learning classification based on k-Nearest Neighbors for PolSAR data-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1590/0001-3765202420230064-
dc.identifier.scopus85191403033-
dc.identifier.isi001217767700001-
dc.contributor.orcid0000-0002-2131-6464-
dc.contributor.orcid0000-0002-6670-2721-
dc.contributor.orcid0000-0002-9884-9090-
dc.contributor.orcid0000-0002-2798-6223-
dc.contributor.authorscopusid57218328580-
dc.contributor.authorscopusid57192542982-
dc.contributor.authorscopusid23009700500-
dc.contributor.authorscopusid56789548300-
dc.identifier.eissn1678-2690-
dc.identifier.issue1-
dc.relation.volume96-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages20-
dc.utils.revision-
dc.contributor.wosstandardWOS:Ferreira, JA-
dc.contributor.wosstandardWOS:Rodrigues, AKG-
dc.contributor.wosstandardWOS:Ospina, R-
dc.contributor.wosstandardWOS:Gomez, L-
dc.date.coverdateEnero 2024-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
dc.description.sjr0,316-
dc.description.jcr1,3-
dc.description.sjrqQ2-
dc.description.jcrqQ3-
dc.description.scieSCIE-
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-0667-2302-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameGómez Déniz, Luis-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

2
actualizado el 08-dic-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 08-dic-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.