Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129815
Campo DC Valoridioma
dc.contributor.authorMederos Barrera,Antonioen_US
dc.contributor.authorSevilla, Joséen_US
dc.contributor.authorMarcello, Javieren_US
dc.contributor.authorEspinosa Gutiérrez, José Maríaen_US
dc.contributor.authorEugenio, Franciscoen_US
dc.date.accessioned2024-04-09T07:08:27Z-
dc.date.available2024-04-09T07:08:27Z-
dc.date.issued2024en_US
dc.identifier.issn2072-4292en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/129815-
dc.description.abstractSeagrass and seaweed meadows hold a very important role in coastal and marine ecosystems. However, anthropogenic impacts pose risks to these delicate habitats. This paper analyses the multitemporal impact of the construction of the largest industrial port in the Canary Islands, near the Special Area of Conservation Natura 2000, on Cymodocea nodosa seagrass meadows (sebadales) of the South of Tenerife, in the locality of Granadilla (Canary Islands, Spain). Very-high-resolution WorldView-2 multispectral satellite data were used for the analysis. Specifically, three images were selected before, during, and after the construction of the port (2011, 2014, and 2022, correspondingly). Initially, advanced pre-processing of the images was performed, and then seabed maps were obtained using the machine learning K-Nearest Neighbors (KNN) supervised classification model, discriminating 12 different bottom types in Case-2 complex waters. The maps achieved high-quality metrics with Precision values of 85%, 81%, and 80%, recall of 76%, 77%, and 77%, and F1 scores of 80%, 79%, and 77% for 2011, 2014, and 2022, respectively. The results mainly show that the construction directly affected the seagrass and seaweed habitats. In particular, the impact of the port on the meadows of Cymodocea nodosa, Caulerpa prolifera, and maërl was assessed. The total maërl population was reduced by 1.9 km2 throughout the study area. However, the Cymodocea nodosa population was maintained at the cost of colonizing maërl areas. Furthermore, the port sedimented a total of 0.98 km2 of seabed, especially Cymodocea nodosa and maërl. In addition, it was observed that Caulerpa prolifera was established as a meadow at the entrance of the port, replacing part of the Cymodocea nodosa and maërl areas. As additional results, bathymetric maps were generated from satellite imagery with the Sigmoid model, and the presence of a submarine outfall was, as well, presented.en_US
dc.languagespaen_US
dc.relation.ispartofRemote Sensingen_US
dc.sourceRemote Sensing[EISSN 2072-4292],v. 16 (6), (Marzo 2024)en_US
dc.subject25 Ciencias de la tierra y del espacioen_US
dc.subject.otherAssessment Impacten_US
dc.subject.otherBathymetry Mapsen_US
dc.subject.otherBenthic Mapsen_US
dc.subject.otherIndustrial Porten_US
dc.subject.otherSatellite Imageryen_US
dc.subject.otherWorldview-2en_US
dc.titleEffects of the Construction of Granadilla Industrial Port in Seagrass and Seaweed Habitats Using Very-High-Resolution Multispectral Satellite Imageryen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/rs16060945en_US
dc.identifier.scopus85189024748-
dc.contributor.orcid0000-0003-1680-0726-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-9646-1017-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-0010-4024-
dc.contributor.authorscopusid57220806560-
dc.contributor.authorscopusid58962016600-
dc.contributor.authorscopusid6602158797-
dc.contributor.authorscopusid57192425380-
dc.contributor.authorscopusid6603605357-
dc.identifier.eissn2072-4292-
dc.identifier.issue6-
dc.relation.volume16en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateMarzo 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,091
dc.description.jcr5,0
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,6
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcidhttps://orcid.org/0000-0003-1680-0726-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.orcid0000-0002-0010-4024-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameMederos Barrera, Antonio Ramón-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
crisitem.author.fullNameEspinosa Gutiérrez, José María-
crisitem.author.fullNameEugenio González, Francisco-
Colección:Artículos
Adobe PDF (12,14 MB)
Vista resumida

Visitas

76
actualizado el 09-nov-2024

Descargas

20
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.