Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/129714
DC FieldValueLanguage
dc.contributor.authorGupta, Rinkien_US
dc.contributor.authorSingh, Rashmien_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.contributor.authorBurget, Radimen_US
dc.contributor.authorKishore Dutta, Malayen_US
dc.date.accessioned2024-04-03T07:34:18Z-
dc.date.available2024-04-03T07:34:18Z-
dc.date.issued2024en_US
dc.identifier.issn1746-8094en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/129714-
dc.description.abstractRespiratory sounds convey significant information about the pulmonary status. This study proposes a deep learning-based framework to create an automatic, non-invasive, diagnostic method of categorizing pulmonary sounds. A labelled database of pulmonary sounds has been collected using an electronic stethoscope and audio recording instrument. Two deep learning architectures, 1D DeepRespNet and 2D DeepRespNet are proposed in this work that were trained and evaluated with normalised 1-D time series and 2-D spectrograms of acoustic signals of six types of lung sounds, respectively. The models were highly optimized to yield superior performance on the considered dataset. Experimental results demonstrate that the 2D DeepRespNet model trained with spectrogram-based representations yields higher accuracy of 95.2% on the test data as compared to the 1D DeepRespNet trained on the time-series data. The proposed model may be deployed on a single board computer or integrated into a smartphone to develop a standalone diagnostic tool to accurately and objectively classify abnormal lung sounds with low time complexity.en_US
dc.languageengen_US
dc.relation.ispartofBiomedical Signal Processing and Controlen_US
dc.sourceBiomedical Signal Processing and Control[ISSN 1746-8094],v. 93, (Julio 2024)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherConvolutional Neural Networken_US
dc.subject.otherMulti-Class Classificationen_US
dc.subject.otherRespiratory Diseaseen_US
dc.subject.otherSpectrogramen_US
dc.titleDeepRespNet: A deep neural network for classification of respiratory soundsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.bspc.2024.106191en_US
dc.identifier.scopus85187204608-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0003-1849-5390-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid55488127500-
dc.contributor.authorscopusid57226730965-
dc.contributor.authorscopusid57219115631-
dc.contributor.authorscopusid23011250200-
dc.contributor.authorscopusid58927547900-
dc.identifier.eissn1746-8108-
dc.relation.volume93en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateJulio 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,284
dc.description.jcr5,1
dc.description.sjrqQ1
dc.description.jcrqQ2
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Artículos
Show simple item record

Page view(s)

69
checked on Sep 7, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.