Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129689
Título: Exploring Data Augmentation Strategies for Diagonal Earlobe Crease Detection
Autores/as: Almonacid-Uribe, Sara
Santana, Oliverio J. 
Hernández-Sosa, Daniel 
Freire-Obregón, David 
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
Palabras clave: Cardiovascular Disease
Computer Vision
Coronary Artery Disease
Deep Learning
Delc, et al.
Fecha de publicación: 2024
Proyectos: La viabilidad jurídica del documento de voluntades anticipadas
Interaccióny Re-Identificación de Personas Mediante Machine Learning, Deep Learningy Análisis de Datos Multimodal: Hacia Una Comunicación Más Natural en la Robótica Social 
Re-identificación mUltimodal de participaNtes en competiciones dEpoRtivaS 
Infraestructura de Computación Científica Para Aplicaciones de Inteligencia Artificialy Simulación Numérica en Medioambientey Gestión de Energías Renovables (Iusiani-Ods) 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 12th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2023)
Resumen: Diagonal earlobe crease (DELC), also known as Frank’s sign, is a diagonal crease, line, or deep fold that appears on the earlobe and has been hypothesized to be a potential predictor of heart attacks. The presence of DELC has been linked to cardiovascular disease, atherosclerosis, and increased risk of coronary artery disease. Some researchers believe that DELC may be an indicator of an impaired blood supply to the earlobe, which could reflect similar issues in the heart’s blood supply. However, more research is needed to determine whether DELC is a reliable marker for identifying individuals at risk of heart attacks or other cardiovascular problems. To this end, the authors have released the first DELC dataset to the public and investigated the performance of numerous state-of-the-art backbones on annotated photos. The experiments demonstrated that combining pre-trained encoders with a customized classifier achieved 97.7% accuracy, with MobileNet being the most promising encoder in terms of the performance-to-size trade-off.
URI: http://hdl.handle.net/10553/129689
ISBN: 978-3-031-54725-6
ISSN: 0302-9743
DOI: 10.1007/978-3-031-54726-3_1
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 14547 LNCS, p. 3-18, (Enero 2024)
Colección:Actas de congresos
Vista completa

Visitas

65
actualizado el 07-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.