Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/129594
Title: Life cycle assessment of instant coffee production considering different energy sources
Authors: Pazmiño, Mayra L.
Mero-Benavides, Medelyne
Aviles, Daniel
Blanco Marigorta, Ana María 
Tinoco, Diana L.
Ramirez, Angel D.
UNESCO Clasification: 3308 Ingeniería y tecnología del medio ambiente
Keywords: Bioenergy
Carbon Footprint
Coffee
Lca
Spent Coffee Grounds, et al
Issue Date: 2024
Journal: Cleaner Environmental Systems 
Abstract: Nowadays, coffee is a popular beverage globally and one of the largest traded commodities. Conventional instant coffee production requires energy and water, producing coffee bagasse (biomass) as an agro-industrial residue. This residue, spent coffee grounds (SCGs), in Ecuador is currently disposed of in the municipal landfills, losing the opportunity to recover energy and minerals. This paper studies the life cycle environmental impacts of instant coffee production using data from a coffee plant in Guayaquil, Ecuador. The study analyzes the impact of generating the required electricity by an internal combustion engine powered by fossil fuel, using the Ecuadorian power grid, or using a combined cooling, heat, and power (CCHP) trigeneration system powered by dried SCGs and natural gas. The results indicate that when SCGs is used to power auxiliary processes, the CO2 emissions greatly decrease, helping to reduce fossil fuel dependence. The study also reveals that scenarios using electricity from the Ecuadorian power grid exhibit lower environmental indicators than those using internal combustion engines. The scenario that includes the CCHP records the lowest indicator in each category, reducing the GWP by 45.2 % compared to the base scenario, pointing out that using energy-efficient technologies lowers the carbon footprint, contributing to decarbonisation simultaneously.
URI: http://hdl.handle.net/10553/129594
DOI: 10.1016/j.cesys.2024.100174
Source: Cleaner Environmental Systems [EISSN 2666-7894], v. 12, (Marzo 2024)
Appears in Collections:Artículos
Adobe PDF (4,78 MB)
Show full item record

SCOPUSTM   
Citations

2
checked on Nov 17, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.