Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/129248
Título: | Forest/Nonforest Segmentation Using Sentinel-1 and -2 Data Fusion in the Bajo Cauca Subregion in Colombia | Autores/as: | Guisao-Betancur, Ana Gómez Déniz, Luis Marulanda-Tobón, Alejandro |
Palabras clave: | Data Fusion Deforestation Forest Segmentation Remote Sensing Sar, et al. |
Fecha de publicación: | 2024 | Publicación seriada: | Remote Sensing | Resumen: | Remote sensing technologies have been successfully used for deforestation monitoring, and with the wide availability of satellite products from different platforms, forest monitoring applications have grown in recent years. The observed potential in these technologies motivates the development of forest mapping and monitoring tools that could also be used for neighboring applications like agriculture or land-use mapping. A literature review confirmed the research areas of interest in deforestation monitoring using synthetic aperture radar (SAR) and data fusion techniques, which guided the formulation of the method developed in this article consisting of a data preprocessing workflow for SAR (Sentinel-1) and multispectral (Sentinel-2) data and a procedure for the selection of a machine learning model for forest/nonforest segmentation evaluated in different combinations of Sentinel-1 and Sentinel-2 bands. The selected model is a random forest algorithm that uses C-band SAR dual-polarimetric bands, intensity features, and vegetation indices derived from optical/multispectral data. The selected random forest classifier’s balanced accuracies were 79–81%, and the f1-scores were 0.72–0.76 for the validation set. The results allow the obtention of yearly forest/nonforest and forest loss maps in the study area of Bajo Cauca in Colombia, a region with a documented high deforestation rate. | URI: | http://hdl.handle.net/10553/129248 | DOI: | 10.3390/rs16010005 | Fuente: | Remote Sensing [EISSN 2072-4292], v. 16 (1), (Enero 2024) |
Colección: | Artículos |
Visitas
297
actualizado el 07-sep-2024
Descargas
266
actualizado el 07-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.