Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/129194
Title: | Modeling citation concentration through a mixture of Leimkuhler curves | Authors: | Gómez Déniz, Emilio Dorta González, Pablo |
UNESCO Clasification: | 570106 Documentación | Keywords: | Concentration Measurement Inequality Measurement Leimkuhler Curve Mixture Power Distribution |
Issue Date: | 2024 | Project: | Evaluación Económicay Meta-Análisis: Soluciones Bayesianas en Economía de la Salud | Journal: | Journal Of Informetrics | Abstract: | When a graphical representation of the cumulative percentage of total citations to articles, ordered from most cited to least cited, is plotted against the cumulative percentage of articles, we obtain a Leimkuhler curve. In this study, we noticed that standard Leimkuhler functions may not be sufficient to provide accurate fits to various empirical informetrics data. Therefore, we introduce a new approach to Leimkuhler curves by fitting a known probability density function to the initial Leimkuhler curve, taking into account the presence of a heterogeneity factor. As a significant contribution to the existing literature, we introduce a pair of mixture distributions (called PG and PIG) to bibliometrics. In addition, we present closed-form expressions for Leimkuhler curves. Some measures of citation concentration are examined empirically for the basic models (based on the Power and Pareto distributions) and the mixed models derived from these. An application to two sources of informetric data was conducted to see how the mixing models outperform the standard basic models. The different models were fitted using non-linear least squares estimation. | URI: | http://hdl.handle.net/10553/129135 http://hdl.handle.net/10553/129194 |
ISSN: | 1751-1577 | DOI: | 10.1016/j.joi.2024.101519 | Source: | Journal of Informetrics[ISSN 1751-1577],v. 18 (2), (Mayo 2024) |
Appears in Collections: | Artículos |
Page view(s)
99
checked on Jun 29, 2024
Download(s)
82
checked on Jun 29, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.