Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/129000
Title: Exploring biometric domain adaptation in human action recognition models for unconstrained environments
Authors: Freire Obregón, David Sebastián 
Barra, Paola
Castrillón-Santana, Modesto 
De Marsico, Maria
UNESCO Clasification: 1203 Ciencia de los ordenadores
33 Ciencias tecnológicas
Keywords: Human action recognition
Biometrics
Transformers
Domain adaptation
Issue Date: 2024
Project: Interaccióny Re-Identificación de Personas Mediante Machine Learning, Deep Learningy Análisis de Datos Multimodal: Hacia Una Comunicación Más Natural en la Robótica Social 
Infraestructura de Computación Científica Para Aplicaciones de Inteligencia Artificialy Simulación Numérica en Medioambientey Gestión de Energías Renovables (Iusiani-Ods) 
Journal: Multimedia Tools and Applications 
Abstract: In conventional machine learning (ML), a fundamental assumption is that the training and test sets share identical feature distributions, a reasonable premise drawn from the same dataset. However, real-world scenarios often defy this assumption, as data may originate from diverse sources, causing disparities between training and test data distributions. This leads to a domain shift, where variations emerge between the source and target domains. This study delves into human action recognition (HAR) models within an unconstrained, real-world setting, scrutinizing the impact of input data variations related to contextual information and video encoding. The objective is to highlight the intricacies of model performance and interpretability in this context. Additionally, the study explores the domain adaptability of HAR models, specifically focusing on their potential for re-identifying individuals within uncontrolled environments. The experiments involve seven pre-trained backbone models and introduce a novel analytical approach by linking domain-related (HAR)and domain-unrelated (re-identification (re-ID)) tasks. Two key analyses addressing contextual information and encoding strategies reveal that maintaining the same encoding approach during training results in high task correlation while incorporating richer contextual information enhances performance. A notable outcome of this study is the comprehensive evaluation of a novel transformer-based architecture driven by a HAR backbone, which achieves a robust re-ID performance superior to state-of-the-art (SOTA). However, it faces challenges when other encoding schemes are applied, highlighting the role of the HAR classifier in performance variations.
URI: http://hdl.handle.net/10553/129000
ISSN: 1573-7721
DOI: 10.1007/s11042-024-18469-5
Source: Multimedia Tools and Applications [1573-7721], (2024)
Appears in Collections:Artículos
Adobe PDF (1,19 MB)
Show full item record

Page view(s)

84
checked on Jun 29, 2024

Download(s)

25
checked on Jun 29, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.