Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/128999
Title: | Analysis of the impact of dataset quality on task-oriented dialogue management | Authors: | Medina Ramírez, Miguel Ángel Guerra Artal, Cayetano Hernández Tejera, Mario |
UNESCO Clasification: | 120304 Inteligencia artificial | Keywords: | Dialog systems Dialogue management Dataset quality Supervised learning |
Issue Date: | 2024 | Conference: | 10th International Conference on Natural Language Processing (NATP 2024) | Abstract: | Task-oriented dialogue systems (TODS) have become crucial for users to interact with machines and computers using natural language. One of its key com- ponents is the dialogue manager, which guides the conversation towards a good goal for the user by providing the best possible response. Previous works have proposed rule-based systems (RBS), reinforcement learning (RL), and supervised learning (SL) as solutions for the correct dialogue management; in other words, select the best response given input by the user. This work explores the impact of dataset quality on the performance of dialogue managers. We delve into po- tential errors in popular datasets, such as Multiwoz 2.1 and SGD. For our inves- tigation, we developed a synthetic dialogue generator to regulate the type and magnitude of errors introduced. Our findings suggest that dataset inaccuracies, like mislabeling, might play a significant role in the challenges faced in dialogue management. | URI: | http://hdl.handle.net/10553/128999 | ISBN: | 978-1-923107-18-2 | DOI: | 10.5121/csit.2024.140420 | Source: | 10th International Conference on Natural Language Processing (NATP 2024) February 24 ~ 25, 2024, Vancouver, Canada | URL: | https://acsty2024.org/natp/papers |
Appears in Collections: | Actas de congresos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.