Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/128904
Campo DC Valoridioma
dc.contributor.authorCruz-Guerrero, Inés A.-
dc.contributor.authorMejıa-Rodrıguez, Aldo R.-
dc.contributor.authorOrtega, Samuel-
dc.contributor.authorFabelo, Himar-
dc.contributor.authorCallicó, Gustavo M.-
dc.contributor.authorJo, Javier A.-
dc.contributor.authorCampos-Delgado, Daniel U.-
dc.date.accessioned2024-02-14T12:51:40Z-
dc.date.available2024-02-14T12:51:40Z-
dc.date.issued2023-
dc.identifier.issn0016-0032-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/128904-
dc.description.abstractBlind linear unmixing (BLU) methods decompose multi and hyperspectral datasets into end-members and abundance maps with an unsupervised perspective. However, due to measurement noise and model uncertainty, the estimated abundance maps could exhibit granularity, which causes a loss of detail that could be crucial in certain applications. To address this problem, in this paper, we present a BLU proposal that considers spatial coherence (SC) in the abundance estimates. The proposed BLU formulation is based on the extended blind end-member and abundance extraction (EBEAE) methodology, and is denoted as EBEAE-SC. In this proposed method, the energy functional of EBEAE-SC includes new variables, which are denoted as internal abundances, to induce SC in the BLU approach. The new formulation of the optimization problem is solved by a coordinate descent algorithm, constrained quadratic optimization, and the split Bregman formulation. We present a comprehensive validation process that considers synthetic and experimental datasets at different noise types and levels, and a comparison with five state-of-the-art BLU methods. In our results, EBEAE-SC can significantly decrease the granularity in the estimated abundances, without losing detail of the structures present in the multi and hyperspectral images. In addition, the resulting complexity of EBEAE-SC is analyzed and compared it to the original formulation of EBEAE, and also the numerical convergence of the resulting iterative process is evaluated. Hence, by our analysis, EBEAE-SC allows blind estimates of end-members and abundances in the studied datasets of diverse applications, producing linearly independent and non-negative end-members, as well as non-negative abundances, with lower estimation errors and computational times compared to five methodologies in the state-of-the-art.-
dc.languageeng-
dc.relation.ispartofJournal of the Franklin Institute-
dc.sourceJournal of the Franklin Institute[ISSN 0016-0032],v. 360 (15), p. 11165-11196, (Octubre 2023)-
dc.subject33 Ciencias tecnológicas-
dc.subject.otherNonnegative Matrix Factorization-
dc.subject.otherLow-Rank-
dc.subject.otherAtherosclerotic Plaques-
dc.subject.otherSparse Representation-
dc.subject.otherRegularization-
dc.subject.otherAlgorithm-
dc.subject.otherNmf-
dc.titleMulti and hyperspectral image unmixing with spatial coherence by extended blind end-member and abundance extraction-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1016/j.jfranklin.2023.08.027-
dc.identifier.scopus85170521740-
dc.identifier.isi001110009100001-
dc.contributor.orcid0000-0001-8034-8530-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-9794-490X-
dc.contributor.orcid0000-0002-3784-5504-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-1555-0131-
dc.contributor.authorscopusid57212001832-
dc.contributor.authorscopusid54788092500-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid56006321500-
dc.contributor.authorscopusid7102413227-
dc.contributor.authorscopusid57207809029-
dc.identifier.eissn1879-2693-
dc.description.lastpage11196-
dc.identifier.issue15-
dc.description.firstpage11165-
dc.relation.volume360-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngid3892261-
dc.contributor.daisngid54091472-
dc.contributor.daisngid29813840-
dc.contributor.daisngid647614-
dc.contributor.daisngid1339508-
dc.contributor.daisngid15472136-
dc.contributor.daisngid1475687-
dc.description.numberofpages32-
dc.utils.revision-
dc.contributor.wosstandardWOS:Cruz-Guerrero, IA-
dc.contributor.wosstandardWOS:Mejia-Rodriguez, AR-
dc.contributor.wosstandardWOS:Ortega, S-
dc.contributor.wosstandardWOS:Fabelo, H-
dc.contributor.wosstandardWOS:Callico, GM-
dc.contributor.wosstandardWOS:Jo, JA-
dc.contributor.wosstandardWOS:Campos-Delgado, DU-
dc.date.coverdateOctubre 2023-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
dc.description.sjr1,191-
dc.description.jcr4,1-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.