Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/128901
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Travieso-González, Carlos M. | en_US |
dc.contributor.author | Piñan Roescher, Alejandro | en_US |
dc.date.accessioned | 2024-02-14T12:42:33Z | - |
dc.date.available | 2024-02-14T12:42:33Z | - |
dc.date.issued | 2023 | en_US |
dc.identifier.isbn | 9783031430848 | en_US |
dc.identifier.issn | 0302-9743 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/128901 | - |
dc.description.abstract | This paper analyzes the effect of the choice of the frequency between samples in the field of solar forecasting. To perform the study, the time series of solar radiation is used, in an autoregressive mode, as the only variable, to predict a single time step. Regarding the models used for the tests, the persistent model, which serves as the baseline, and neural networks are used, the most common and increasingly elaborate: Linear, MLP, CNN1D, and LSTM models. To compare the prediction accuracy two error metrics are used: RMSE and MAE. From the results it can be deduced that the analysis of the time interval between samples is a key factor, since a bad choice can result that persistent model being as good as the best predictions of the CNN1D and LSTM models. In addition, it is shown that as the time interval between samples increases, the choice of a model and its input window becomes more important. This paper intends to serve as a first guide that allows selecting parameters to implement predictive models for solar forecasting in an existing infrastructure. | - |
dc.language | eng | en_US |
dc.relation.ispartof | Lecture Notes In Computer Science (Including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics) | en_US |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 14134 LNCS, p. 588-600, (Enero 2023) | en_US |
dc.subject | 3307 Tecnología electrónica | - |
dc.subject.other | Input Steps Window To The Model | - |
dc.subject.other | Interval Between Samples | - |
dc.subject.other | Neural Networks | - |
dc.subject.other | Solar Forecasting | - |
dc.subject.other | Time Series Predictions | - |
dc.title | Analysis of the Effect of the Time Interval Between Samples on the Solar Forecasting | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | 17th International Work-Conference on Artificial Neural Networks, IWANN 2023 | en_US |
dc.identifier.doi | 10.1007/978-3-031-43085-5_47 | en_US |
dc.identifier.scopus | 85174522785 | - |
dc.identifier.isi | 001155313400047 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 57219115631 | - |
dc.contributor.authorscopusid | 57217224991 | - |
dc.identifier.eissn | 1611-3349 | - |
dc.description.lastpage | 600 | en_US |
dc.description.firstpage | 588 | en_US |
dc.relation.volume | 14134 LNCS | en_US |
dc.investigacion | Ingeniería y Arquitectura | - |
dc.type2 | Actas de congresos | en_US |
dc.contributor.daisngid | 31805132 | - |
dc.contributor.daisngid | 55005189 | - |
dc.description.numberofpages | 13 | en_US |
dc.utils.revision | Sí | - |
dc.contributor.wosstandard | WOS:Travieso-González, CM | - |
dc.contributor.wosstandard | WOS:Piñán-Roescher, A | - |
dc.date.coverdate | Enero 2023 | en_US |
dc.identifier.conferenceid | events150445 | - |
dc.identifier.ulpgc | Sí | - |
dc.contributor.buulpgc | BU-TEL | en_US |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
crisitem.author.fullName | Piñan Roescher, Alejandro | - |
Colección: | Actas de congresos |
Visitas
21
actualizado el 27-abr-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.