Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/128884
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Vasquez Salazar, Ruben Dario | en_US |
dc.contributor.author | Cardona Mesa, Ahmed Alejandro | en_US |
dc.contributor.author | Gómez Déniz, Luis | en_US |
dc.contributor.author | Travieso González, Carlos Manuel | en_US |
dc.date.accessioned | 2024-02-12T09:19:01Z | - |
dc.date.available | 2024-02-12T09:19:01Z | - |
dc.date.issued | 2024 | en_US |
dc.identifier.issn | 1545-598X | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/128884 | - |
dc.description.abstract | Deep Learning methods require immense amounts of labeled data to provide reasonable results. In computer vision applications, and more specifically in despeckling SAR (Synthetic Aperture Radar) images, due to the speckle content, there is no ground truth available. To test the performances of despeckling filters, the common protocol is to synthetically corrupt optical images with a suitable speckle model and then, after filtering, well-known metrics are obtained. Then, filters are tested on actual SAR data. However, even the most elaborated speckle models are far from accounting for the complex mechanisms related to SAR images. In this paper, a methodology to design a realistic dataset is proposed. Actual SAR images of the same scene acquired with the same sensor on different dates, then they are properly co-registered and averaged to get a ground truth-like reference image to objectively evaluate the performance of a despeckling method. To show the benefits of the proposed methodology, a deep learning approach is used to filter the data by using the designed dataset, which will be called the “SAR model”. Then they are compared with the standard protocol by using synthetically corrupted optical images, which will be the “Synthetic model”. One last validation is performed by filtering the same images with FANS, a well-known despeckling filter and compared with the results obtained with autoencoder. The validation on actual SAR data not included in the training phase validates the proposed methodology. From the results shown, it is recommended to test filters on the proposed more realistic dataset. | en_US |
dc.language | spa | en_US |
dc.relation.ispartof | IEEE Geoscience and Remote Sensing Letters | en_US |
dc.source | IEEE Geoscience and Remote Sensing Letters [ISSN 1545-598X], (Enero 2024) | en_US |
dc.subject | 220920 Radiometría | en_US |
dc.subject.other | Deep Learning (Dl) | en_US |
dc.subject.other | Multitemporal Fusion | en_US |
dc.subject.other | Noise Measurement | en_US |
dc.subject.other | Optical Filters | en_US |
dc.subject.other | Protocols | en_US |
dc.subject.other | Radar Polarimetry | en_US |
dc.subject.other | Sar Data | en_US |
dc.subject.other | Speckle | en_US |
dc.subject.other | Speckle Noise | en_US |
dc.subject.other | Supervised Learning | en_US |
dc.subject.other | Synthetic Aperture Radar | en_US |
dc.subject.other | Training | en_US |
dc.title | A new methodology for assessing SAR despeckling filters | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/LGRS.2024.3357211 | en_US |
dc.identifier.scopus | 85183665645 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 58544220200 | - |
dc.contributor.authorscopusid | 58544725400 | - |
dc.contributor.authorscopusid | 56789548300 | - |
dc.contributor.authorscopusid | 57219115631 | - |
dc.identifier.eissn | 1558-0571 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.description.numberofpages | 5 | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Enero 2024 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 1,248 | |
dc.description.jcr | 4,8 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,7 | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUCES: Centro de Tecnologías de la Imagen | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | GIR IUCES: Centro de Tecnologías de la Imagen | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | GIR IUCES: Centro de Tecnologías de la Imagen | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0003-0667-2302 | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Vasquez Salazar, Ruben Dario | - |
crisitem.author.fullName | Cardona Mesa, Ahmed Alejandro | - |
crisitem.author.fullName | Gómez Déniz, Luis | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
Colección: | Artículos |
Citas SCOPUSTM
3
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 15-dic-2024
Visitas
62
actualizado el 06-jul-2024
Descargas
115
actualizado el 06-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.