Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/128685
DC FieldValueLanguage
dc.contributor.authorGonzález González, Aridaneen_US
dc.contributor.authorPoitrasson, Francken_US
dc.contributor.authorJiménez-Villacorta, Felixen_US
dc.contributor.authorShirokova, Liudmila S.en_US
dc.contributor.authorPokrovsky, Oleg S.en_US
dc.date.accessioned2024-01-26T14:01:29Z-
dc.date.available2024-01-26T14:01:29Z-
dc.date.issued2023en_US
dc.identifier.issn2050-7887en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/128685-
dc.description.abstractDespite the importance of structural control on metal stable isotope fractionation in inorganic and abiotic systems, the link between metal structural changes and related isotopic fractionation during reactions with organic surfaces and live cells remains poorly established. We conducted reversible adsorption of Fe(ii) and Fe(iii) on the surface of exopolysaccharide (EPS)-rich and EPS-poor Pseudomonas aureofaciens, and we allowed Fe intracellular uptake by growing cells. We analyzed the Fe isotopic composition of the remaining fluid and cell biomass, and compared the isotopic fractionation during adsorption and assimilation reaction with relative changes in Fe structural status between aqueous solution and bacterial cells, based on available and newly collected X-ray absorption spectroscopy (XAS) observations. Iron(iii) adsorption onto P. aureofaciens at 2.8 ≤ pH ≤ 6.0 produced an enrichment of the cell surface in heavier isotopes with Δ57Fecell-solution ranging from +0.7 to +2.1‰, without a link to pH in EPS-rich cultures. In contrast, the magnitude of isotopic fractionation increased with pH in EPS-poor cultures. Iron(ii) adsorption produced an even larger enrichment of the cell surface in heavier isotopes, by up to 3.2‰, tentatively linked to Fe(iii) hydroxide precipitation. Intracellular assimilation of Fe(ii) favored heavier isotopes and led to Δ57Fecell-solution of +0.8‰. In addition, Fe(iii) cellular uptake produced an enrichment of the bacterial biomass in lighter isotopes with Δ57Fecell-solution of −1‰. The XAS analyses demonstrated the dominance of Fe(iii)-phosphate complexes both at the cell surface and in the cell interior. We suggest that heavier isotope enrichment of the cell surface relative to the aqueous solution is due to strong Fe(iii)-phosphoryl surface complexes and Fe complexation to ligands responsible for metal transfer from the surface to the inner cell. In case of Fe(ii) adsorption or assimilation, its partial oxidation within the cell compartments may lead to cell enrichment in heavier isotopes. In contrast, loss of symmetry of assimilated Fe(iii) relative to the aqueous Fe3+ ion and longer bonds of intracellular ions relative to aqueous Fe(iii)-citrate or hydroxo-complexes could produce an enrichment of cells in lighter isotopes. The versatile nature of Fe(ii) and Fe(iii) fractionation without a distinct effect of pH and surface exopolysaccharide coverage suggests that, in natural soil and sedimentary environments, Fe isotope fractionation during interaction with heterotrophic bacteria will be primarily governed by Fe complexation with DOM and Fe redox status in the soil pore water.en_US
dc.languageengen_US
dc.relation.ispartofEnvironmental Sciences: Processes and Impactsen_US
dc.sourceEnvironmental Science: Processes and Impacts [ISSN 2050-7887], (Diciembre 2023)en_US
dc.subject23 Químicaen_US
dc.titleContrasted redox-dependent structural control on Fe isotope fractionation during its adsorption onto and assimilation by heterotrophic soil bacteriaen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1039/d3em00332aen_US
dc.identifier.scopus85182198538-
dc.contributor.orcid0000-0002-5637-8841-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid37031064100-
dc.contributor.authorscopusid6603861105-
dc.contributor.authorscopusid8921202800-
dc.contributor.authorscopusid6701785699-
dc.contributor.authorscopusid35280747200-
dc.identifier.eissn2050-7895-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.numberofpages13en_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr1,607-
dc.description.jcr5,5-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds10,4-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Química-
crisitem.author.orcid0000-0002-5637-8841-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameGonzález González, Aridane-
Appears in Collections:Artículos
Adobe PDF (1,1 MB)
Show simple item record

Page view(s)

203
checked on Nov 1, 2024

Download(s)

131
checked on Nov 1, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.