Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/128257
Campo DC Valoridioma
dc.contributor.authorArnone, Veronicaen_US
dc.contributor.authorSantana Casiano, Juana Magdalenaen_US
dc.contributor.authorGonzález Dávila, Melchoren_US
dc.contributor.authorPlanquette, Hélèneen_US
dc.contributor.authorSarthou, Géraldineen_US
dc.contributor.authorGerringa, Loes J.A.en_US
dc.contributor.authorGonzález González, Aridaneen_US
dc.date.accessioned2024-01-08T14:03:14Z-
dc.date.available2024-01-08T14:03:14Z-
dc.date.issued2023en_US
dc.identifier.issn2296-7745en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/128257-
dc.description.abstractThe Arctic Ocean is a unique biogeochemical environment characterized by low salinity surface waters, extensive sea-ice coverage, high riverine inputs, large shelf extension and the long residence time of deep waters. These characteristics determine the distribution of dissolved bio-essential trace metals, such as copper (Cu), and the dissolved organic-binding ligands capable of complexing it. This work reports the concentrations and conditional stability constants of dissolved Cu-binding ligands (LCu and log KcondCu2+L) measured in samples from the Polarstern (PS94) expedition, as part of the international GEOTRACES program (cruise GN04). Full-depth profile stations from the Barents Sea, Nansen Basin, Amundsen Basin and Makarov Basin were analysed by competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV). The basins and water masses presented a wide range of LCu concentrations (range: 1.40 – 7.91 nM) and log KcondCu2+L values (range: 13.83 – 16.01). The highest variability of Cu-binding ligand concentrations was observed in surface waters (≤200 m), and mean concentrations increased from the Barents Sea and Nansen Basin (2.15 ± 0.31 nM and 1.93 ± 0.35 nM, respectively) to the Amundsen (3.84 ± 1.69 nM) and Makarov Basins (4.40± 2.03 nM). The influence of the Transpolar Drift (TDP) flow path was observed in the Amundsen and Makarov Basins, especially on Cu-binding ligand concentrations (LCu range: 3.96 – 7.91 nM). In contrast, deep waters (>200 m) showed no significant differences between basins and water masses in terms of LCu concentrations (range: 1.45 – 2.78 nM) and log KcondCu2+L (range: 14.02 – 15.46). The presence of strong Cu-binding ligands (log KcondCu2+L>13) in surface waters stabilises the excess of dissolved copper (dCu) transported in the TPD and favours its export to the Fram Strait and Nordic Seas.en_US
dc.languageengen_US
dc.relationEfecto de la Acidificacion Oceanica, la Temperaturay El Contenido de Materia Organica en la Persistencia de Fe(Ii) en El Oceano Atlanticoen_US
dc.relation.ispartofFrontiers in Marine Scienceen_US
dc.sourceFrontiers in Marine Science [ISSN 2296-7745],v. 10, (Enero 2023)en_US
dc.subject251002 Oceanografía químicaen_US
dc.subject.otherArctic Oceanen_US
dc.subject.otherCopperen_US
dc.subject.otherCopper-Binding Ligandsen_US
dc.subject.otherTranspolar Driften_US
dc.subject.otherVoltammetric Methoden_US
dc.titleNatural copper-binding ligands in the Arctic Ocean. The influence of the Transpolar Drift (GEOTRACES GN04)en_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3389/fmars.2023.1306278en_US
dc.identifier.scopus85180692510-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57195278718-
dc.contributor.authorscopusid57265678700-
dc.contributor.authorscopusid6603931257-
dc.contributor.authorscopusid22836555200-
dc.contributor.authorscopusid6603306739-
dc.contributor.authorscopusid34770314700-
dc.contributor.authorscopusid37031064100-
dc.identifier.eissn2296-7745-
dc.relation.volume10en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.numberofpages20en_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr0,907
dc.description.jcr3,7
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,3
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.principalinvestigatorSantana Casiano, Juana Magdalena-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Química-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Química-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Química-
crisitem.author.orcid0000-0002-8044-0350-
crisitem.author.orcid0000-0002-7930-7683-
crisitem.author.orcid0000-0003-3230-8985-
crisitem.author.orcid0000-0002-5637-8841-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameArnone,Veronica-
crisitem.author.fullNameSantana Casiano, Juana Magdalena-
crisitem.author.fullNameGonzález Dávila, Melchor-
crisitem.author.fullNameGonzález González, Aridane-
Colección:Artículos
Adobe PDF (6,44 MB)
Vista resumida

Citas SCOPUSTM   

3
actualizado el 10-nov-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 10-nov-2024

Visitas

41
actualizado el 04-may-2024

Descargas

24
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.