Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/128213
DC FieldValueLanguage
dc.contributor.authorRodríguez Coira, Juanen_US
dc.contributor.authorDelgado Dolset, Maríaen_US
dc.contributor.authorObeso, Daviden_US
dc.contributor.authorDolores Hernández, Marianaen_US
dc.contributor.authorQuintás, Guillermoen_US
dc.contributor.authorAngulo, Santiagoen_US
dc.contributor.authorBarber, Domingoen_US
dc.contributor.authorCarrillo Díaz, Teresaen_US
dc.contributor.authorEscribese, María M.en_US
dc.contributor.authorVillaseñor, Almaen_US
dc.date.accessioned2024-01-03T15:04:39Z-
dc.date.available2024-01-03T15:04:39Z-
dc.date.issued2019en_US
dc.identifier.issn1573-3890en_US
dc.identifier.urihttp://hdl.handle.net/10553/128213-
dc.description.abstractMetabolomics, understood as the science that manages the study of compounds from the metabolism, is an essential tool for deciphering metabolic changes in disease. The experiments rely on the use of high-throughput analytical techniques such as liquid chromatography coupled to mass spectrometry (LC-ToF MS). This hyphenation has brought positive aspects such as higher sensitivity, specificity and the extension of the metabolome coverage in a single run. The analysis of a high number of samples in a single batch is currently not always feasible due to technical and practical issues (i.e., a drop of the MS signal) which result in the MS stopping during the experiment obtaining more than a single sample batch. In this situation, careful data treatment is required to enable an accurate joint analysis of multi-batch data sets. This paper summarizes the analytical strategies in large-scale metabolomic experiments; special attention has been given to QC preparation troubleshooting and data treatment. Moreover, labeled internal standards analysis and their aim in data treatment, and data normalization procedures (intra- and inter-batch) are described. These concepts are exemplified using a cohort of 165 patients from a study in asthma.en_US
dc.languageengen_US
dc.relation.ispartofMetabolomicsen_US
dc.sourceMetabolomics [1573-3890], v. 9(11):247 (octubre 2019)en_US
dc.subject32 Ciencias médicasen_US
dc.subject3201 Ciencias clínicasen_US
dc.subject.otherLC-QToF-MSen_US
dc.subject.otherAsthmaen_US
dc.subject.otherLarge-scaleen_US
dc.subject.otherMetabolomicsen_US
dc.subject.otherNormalizationen_US
dc.titleTroubleshooting in large-scale LC-ToF-MS Metabolomics Analysis: Solving Complex Issues in Big Cohorts (9: 247:3-17)en_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.issue11-
dc.relation.volume9en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.description.numberofpages17en_US
dc.utils.revisionen_US
dc.date.coverdateOctubre 2019en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr0,875
dc.description.jcr2,881
dc.description.sjrqQ2
dc.description.jcrqQ3
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUIBS: Patología y Tecnología médica-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.orcid0000-0002-3047-8908-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameCarrillo Díaz, Teresa-
Appears in Collections:Artículos
Adobe PDF (2,74 MB)
Show simple item record

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.