Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/127584
Título: | Spatial resolution impacts projected plant responses to climate change on topographically complex islands | Autores/as: | Patiño, Jairo Collart, Flavien Vanderpoorten, Alain Martin-Esquivel, José Luis Naranjo Cigala, Agustín Mirolo, Sébastien Karger, Dirk N. |
Clasificación UNESCO: | 250501-1 Biogeografía botánica 2502 Climatología |
Palabras clave: | Bryophytes Canary Islands Climate warming Microrefugia Range shift, et al. |
Fecha de publicación: | 2023 | Proyectos: | Hacia un modelo mecanístico de invasión en islas oceánicas: determinantes del éxito de establecimiento e invasión de plantas exóticas (PID2019-110538GA-I00) El Reto de las Plantas Invasoras en Islas: Hacia un Enfoque Integrador para la Conservación de la Flora de las Islas Canarias. (PR19_ECO_0046) |
Publicación seriada: | Diversity and Distributions | Resumen: | Understanding how grain size affects our ability to characterize species responses to ongoing climate change is of crucial importance in the context of an increasing awareness for the substantial difference that exists between coarse spatial resolution macroclimatic data sets and the microclimate actually experienced by organisms. Climate change impacts on biodiversity are expected to peak in mountain areas, wherein the differences between macro and microclimates are precisely the largest. Based on a newly generated fine-scale environmental data for the Canary Islands, we assessed whether data at 100 m resolution is able to provide more accurate predictions than available data at 1 km resolution. We also analysed how future climate suitability predictions of island endemic bryophytes differ depending on the grain size of grids.Location Canary Islands. Time period Present (1979–2013) and late-century (2071–2100). Taxa Bryophytes. Methods We compared the accuracy and spatial predictions using ensemble of small models for 14 Macaronesian endemic bryophyte species. We used two climate data sets: CHELSA v1.2 (~1 km) and CanaryClim v1.0 (100 m), a downscaled version of the latter utilizing data from local weather stations. CanaryClim also encompasses future climate data from five individual model intercomparison projects for three warming shared socio-economic pathways. Results Species distribution models generated from CHELSA and CanaryClim exhibited a similar accuracy, but CanaryClim predicted buffered warming trends in mid-elevation ridges. CanaryClim consistently returned higher proportions of newly suitable pixels (8%–28%) than CHELSA models (0%–3%). Consequently, the proportion of species predicted to occupy pixels of uncertain suitability was higher with CHELSA (3–8 species) than with CanaryClim (0–2 species). Main conclusions The resolution of climate data impacted the predictions rather than the performance of species distribution models. Our results highlight the crucial role that fine-resolution climate data sets can play in predicting the potential distribution of both microrefugia and new suitable range under warming climate. | URI: | http://hdl.handle.net/10553/127584 | ISSN: | 1472-4642 | DOI: | 10.1111/ddi.13757 | Fuente: | Diversity and Distributions [1472-4642], vol.29(10), p. 1245-1262 |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
8
actualizado el 24-nov-2024
Visitas
27
actualizado el 27-abr-2024
Descargas
15
actualizado el 27-abr-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.