Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127458
Title: Similarity classes in the eight-tetrahedron longest-edge partition of a regular tetrahedron
Authors: Padrón, Miguel A. 
Plaza, Ángel 
Suárez, Jose Pablo 
UNESCO Clasification: 12 Matemáticas
120601 Construcción de algoritmos
Keywords: Regular tetrahedron
Similarity classes
8T-LE partition
Normalized sextuple
Longest-edge bisection, et al
Issue Date: 2023
Project: FEI Innovación y Transferencia empresarial en material científico tecnológica en la rama Geoinformática y datos
Journal: Mathematics 
Abstract: A tetrahedron is called regular if its six edges are of equal length. It is clear that, for an initial regular tetrahedron R0, the iterative eight-tetrahedron longest-edge partition (8T-LE) of R0 produces an infinity sequence of tetrahedral meshes, τ0 = {R0}, τ1 = {R1}, τ2 = {R2}, . . ., τn = {Rn }, . . .. In this paper, it is proven that, in the iterative process just mentioned, only two distinct similarity classes are generated. Therefore, the stability and the non-degeneracy of the generated meshes, as well as the minimum and maximum angle condition straightforwardly follow. Additionally, for a standard-shape tetrahedron quality measure (η) and any tetrahedron Rn Є τn, n > 0, then η Rn ≥ 2/3 η(R0). The non-degeneracy constant is c = 2/3 in the case of the iterative 8T-LE partition of a regular tetrahedron.
ISSN: 2227-7390
DOI: 10.3390/math11214456
Source: Mathematics [ISSN 2227-7390], v. 11, 4456, (Octubre 2023)
Appears in Collections:Artículos
Adobe PDF (455,38 kB)
Show full item record

Page view(s)

139
checked on Oct 12, 2024

Download(s)

41
checked on Oct 12, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.