Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127432
Título: Litter segmentation with LOTS dataset
Autores/as: Barra, Paola
Orefice, Giosuè
Auriemma Citarella, Alessia
Castrillón Santana, Modesto Fernando 
Ciaramella, Angelo
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Computer vision
Dataset
Litter detection
Machine learning
Segmentation
Fecha de publicación: 2023
Conferencia: ACM 3rd International Conference on Information Technology for Social Good (GoodIT 2023)
Resumen: The marine ecosystem faces a significant threat due to the release of human waste into the sea. One of the most challenging issues is identifying and removing small particles that settle on the sand. These particles can be ingested by local fauna or cause harm to the marine ecosystem. Distinguishing these particles from natural materials like shells and stones is difficult, as they blend in with the surroundings. To address this problem, we utilized the Litter On The Sand (LOTS) dataset, which comprises images of clean, dirty, and wavy sand from three different beaches. We established an initial benchmark on this dataset by employing state-of-the-art Deep Learning segmentation techniques. The evaluated models included MultiResU-Net, Half MultiResU-Net, and Quarter MultiResU-Net. The results revealed that the Half MultiResU-Net model outperformed the others for most types of sand analyzed, providing valuable insights for future efforts in combating marine litter and preserving the health of our marine ecosystems.
URI: http://hdl.handle.net/10553/127432
ISBN: 979-8-4007-0116-0
DOI: 10.1145/3582515.3609511
Fuente: GoodIT '23: ACM International Conference on Information Technology for Social Good, 2023, p. 1-5, Lisbon Portugal , (Septiembre 2023)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.