Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127129
Campo DC Valoridioma
dc.contributor.authorRuiz García, Alejandroen_US
dc.contributor.authorDe La Nuez Pestana, Ignacio Agustínen_US
dc.contributor.authorKhayet, Men_US
dc.date.accessioned2023-10-04T11:56:15Z-
dc.date.available2023-10-04T11:56:15Z-
dc.date.issued2023en_US
dc.identifier.issn0011-9164en_US
dc.identifier.urihttps://doi.org/10.1016/j.desal.2023.116523-
dc.description.abstractReverse osmosis (RO) is one of the most widespread desalination technologies in use today due to its good performance and reliability. Given that it is an energy intensive technology, using variable renewable energy sources (VRES) to power RO systems is an interesting option. Work with the RO system under variable operating conditions is one of the strategies that can be employed to take advantage of all the energy that is available at any given time from an off-grid renewable system. However, this will entail additional challenges in terms of, among other factors, plant maintenance and permeate production rate and quality. In grid-connected seawater RO (SWRO) desalination plants, energy recovery devices (ERD) are commonly used to increase energy efficiency performance. In these cases, the ERD usually operates under constant operating conditions. This work aims to assess the performance of an SWRO system with an ERD under widely variable operating conditions. The SWRO system has six membrane elements in pressure vessels. The ERD is a Pelton turbine connected to a generator to measure the energy produced by the turbine. An artificial neural network (ANN) based model was developed to estimate the performance of the SWRO-ERD system under variable operating conditions. According to the results, power savings of between 2.9 and 6.08 kW can be achieved for a wide range of operating conditions, allowing an increase in the produced permeate flux (Qp). The proposed ANN-based model is able to estimate Qp and permeate electrical conductivity with error intervals of 1.56 × 10−6 - 8.49 × 10−2 m3 h−1 and 8.33 × 10−5 - 31.06 μS cm−1, respectively. The experimental data and the developed model could help to obtain a better performance prediction of VRES-powered SWRO systems that are operating under variable operating conditions and with ERDs.en_US
dc.languageengen_US
dc.relation.ispartofDesalination (Amsterdam)en_US
dc.sourceDesalination [0011-9164], v. 555, 116523, 2023en_US
dc.subject3308 Ingeniería y tecnología del medio ambienteen_US
dc.subject230331 Química del aguaen_US
dc.subject.otherDesalinationen_US
dc.subject.otherReverse osmosisen_US
dc.subject.otherEnergy recovery deviceen_US
dc.subject.otherVariable operationen_US
dc.subject.otherRenewable energyen_US
dc.subject.otherArtificial neural networksen_US
dc.titlePerformance assessment and modeling of an SWRO pilot plant with an energy recovery device under variable operating conditionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.desal.2023.116523en_US
dc.identifier.scopus2-s2.0-85149780900-
dc.identifier.isiWOS:000955096100001-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.investigacionIngeniería y Arquitecturaen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr1,521
dc.description.jcr9,9
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Energía, Corrosión, Residuos y Agua-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR Energía, Corrosión, Residuos y Agua-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-5209-653X-
crisitem.author.orcid0000-0001-6652-2360-
crisitem.author.parentorgDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.parentorgDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.fullNameRuiz García, Alejandro-
crisitem.author.fullNameDe La Nuez Pestana, Ignacio Agustín-
Colección:Artículos
Adobe PDF (2,14 MB)
Vista resumida

Citas SCOPUSTM   

17
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

15
actualizado el 15-dic-2024

Visitas

45
actualizado el 28-sep-2024

Descargas

32
actualizado el 28-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.