Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/124484
Título: LOTS: Litter on the Sand dataset for litter segmentation
Autores/as: Barra, Paola
Citarella, Alessia Auriemma
Orefice, Giosue
Castrillon-Santana, Modesto 
Ciaramella, Angelo
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Photography
Image segmentation
Image resolution
Ecosystems
Virtual environments, et al.
Fecha de publicación: 2023
Publicación seriada: IEEE Access 
Conferencia: 18th International Conference on Machine Vision Application (MVA 2023)
Resumen: The marine ecosystem is threatened by human waste released into the sea. One of the most challenging marine litter to identify and remove are the small particles settled on the sand which may be ingested by local fauna or cause damage to the marine ecosystem. Those particles are not easy to identify because they get confused with maritime/natural material, natural elements such as shells, stones or others, which can not be classified as "litter". In this work we present a dataset of Litter On The Sand (LOTS), with images of clean, dirty and wavy sand from 3 different beaches.
URI: http://hdl.handle.net/10553/124484
DOI: 10.23919/MVA57639.2023.10216220
Fuente: Proceedings of MVA 2023 - 18th International Conference on Machine Vision Applications (MVA) Hamamatsu, Japan, July 23-25, 2023
Colección:Actas de congresos
Vista completa

Visitas

14
actualizado el 23-sep-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.