Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/124432
Campo DC Valoridioma
dc.contributor.authorDeVitre, Charlotte L.en_US
dc.contributor.authorGazel, Estebanen_US
dc.contributor.authorRamalho, Ricardo S.en_US
dc.contributor.authorVenugopal, Swethaen_US
dc.contributor.authorSteele-MacInnis, Matthewen_US
dc.contributor.authorHua, Junlinen_US
dc.contributor.authorAllison, Chelsea M.en_US
dc.contributor.authorMoore, Lowell R.en_US
dc.contributor.authorCarracedo Gomez,Juan Carlosen_US
dc.contributor.authorMonteleone, Brianen_US
dc.date.accessioned2023-09-13T13:16:42Z-
dc.date.available2023-09-13T13:16:42Z-
dc.date.issued2023en_US
dc.identifier.issn0027-8424en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/124432-
dc.description.abstractConstraining the volatile content of magmas is critical to our understanding of eruptive processes and their deep Earth cycling essential to planetary habitability [R. Dasgupta, M. M. Hirschmann, Earth Planet. Sci. Lett.298, 1 (2010)]. Yet, much of the work thus far on magmatic volatiles has been dedicated to understanding their cycling through subduction zones. Further, studies of intraplate mafic volcanism have disproportionately focused on Hawaii [P. E. Wieser et al., Geochem. Geophys. Geosyst.22, e2020GC009364 (2021)], making assessments of the overall role of intraplate volcanoes in the global volatile cycles a challenge. Additionally, while mafic volcanoes are the most common landform on Earth and the Solar System [C. A. Wood, J. Volcanol. Geotherm. Res.7, 387-413 (1980)], they tend to be overlooked in favor of silicic volcanoes when it comes to their potential for explosivity. Here, we report primitive (olivine-hosted, with host Magnesium number - Mg# 78 to 88%) melt inclusion (MI) data from Fogo volcano, Cabo Verde, that suggest that oceanic intraplate silica-undersaturated explosive eruptions sample volatile-rich sources. Primitive MI (melt Mg# 70 to 71%) data suggest that these melts are oxidized (NiNiO to NiNiO+1) and very high in volatiles (up to 2 wt% CO2, 2.8 wt% H2O, 6,000 ppm S, 1,900 ppm F, and 1,100 ppm Cl) making Fogo a global endmember. Storage depths calculated from these high volatile contents also imply that magma storage at Fogo occurs at mantle depths (~20 to 30 km) and that these eruptions are fed from the mantle. Our results suggest that oceanic intraplate mafic eruptions are sustained from the mantle by high volatile concentrations inherited from their source and that deep CO2 exsolution (here up to ~800 MPa) drives their ascent and explosivity.en_US
dc.languageengen_US
dc.relation.ispartofProceedings of the National Academy of Sciences of the United States of Americaen_US
dc.sourceProceedings of the National Academy of Sciences of the United States of America[ISSN 0027-8424], v. 120 (33), (Agosto 2023)en_US
dc.subject250621 Vulcanologíaen_US
dc.subject.otherFogoen_US
dc.subject.otherIntraplate Volcanoesen_US
dc.subject.otherMantleen_US
dc.subject.otherMelt Inclusionsen_US
dc.subject.otherVolatilesen_US
dc.titleOceanic intraplate explosive eruptions fed directly from the mantleen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1073/pnas.2302093120en_US
dc.identifier.scopus85166784173-
dc.contributor.orcid0000-0002-7167-7997-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0001-5053-9344-
dc.contributor.orcid0000-0002-6137-4319-
dc.contributor.orcid0000-0002-1395-3009-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-4282-2796-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57209830614-
dc.contributor.authorscopusid12785643800-
dc.contributor.authorscopusid36011115200-
dc.contributor.authorscopusid58524248600-
dc.contributor.authorscopusid49061539700-
dc.contributor.authorscopusid57199646035-
dc.contributor.authorscopusid57198266598-
dc.contributor.authorscopusid56599747300-
dc.contributor.authorscopusid55663151400-
dc.contributor.authorscopusid15925975600-
dc.identifier.eissn1091-6490-
dc.identifier.issue33-
dc.relation.volume120en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.numberofpages8en_US
dc.utils.revisionen_US
dc.date.coverdateAgosto 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr3,737
dc.description.jcr11,1
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
dc.description.erihplusERIH PLUS
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUNAT: Geología de Terrenos Volcánicos-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.orcid0000-0002-4282-2796-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.fullNameCarracedo Gomez,Juan Carlos-
Colección:Artículos
Adobe PDF (1,55 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.