Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/124407
DC FieldValueLanguage
dc.contributor.authorAbate, Andrea F.en_US
dc.contributor.authorCimmino, Luciaen_US
dc.contributor.authorLorenzo-Navarro, Javieren_US
dc.date.accessioned2023-09-12T09:39:08Z-
dc.date.available2023-09-12T09:39:08Z-
dc.date.issued2023en_US
dc.identifier.issn0167-8655en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/124407-
dc.description.abstractFace-based recognition methods usually need the image of the whole face to perform, but in some situations, only a fraction of the face is visible, for example wearing sunglasses or recently with the COVID pandemic we had to wear facial masks. In this work, we propose a network architecture made up of four deep learning streams that process each one a different face element, namely: mouth, nose, eyes, and eyebrows, followed by a feature merge layer. Therefore, the face is segmented into the part of interest by means of ROI masks to keep the same input size for the four network streams. The aim is to assess the capacity of different combinations of face elements in recognizing the subject. The experiments were carried out on the Masked Face Recognition Database (M2FRED) which includes videos of 46 participants. The obtained results are 96% of recognition accuracy considering the four face elements; and 92%, 87%, and 63% of accuracy for the best combination of three, two, and one face elements respectively.en_US
dc.languageengen_US
dc.relation.ispartofPattern Recognition Lettersen_US
dc.sourcePattern Recognition Letters[ISSN 0167-8655],v. 173, p. 45-49, (Septiembre 2023)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherFace Analysisen_US
dc.subject.otherMulti-Input Cnnen_US
dc.titleAn ablation study on part-based face analysis using a Multi-input Convolutional Neural Network and Semantic Segmentationen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.patrec.2023.07.010en_US
dc.identifier.scopus85166736227-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0003-4880-4975-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid7004144394-
dc.contributor.authorscopusid57220807983-
dc.contributor.authorscopusid15042453800-
dc.description.lastpage49en_US
dc.description.firstpage45en_US
dc.relation.volume173en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateSeptiembre 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr1,4
dc.description.jcr5,1
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds11,0
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameLorenzo Navarro, José Javier-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 17, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.