Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/124220
Título: An Encoder-Decoder Architecture within a Classical Signal-Processing Framework for Real-Time Barcode Segmentation
Autores/as: Gómez-Cárdenes, Óscar
Marichal-Hernández, José Gil
Son, Jung Young
Pérez Jiménez, Rafael 
Rodríguez-Ramos, José Manuel
Clasificación UNESCO: 3325 Tecnología de las telecomunicaciones
Palabras clave: Barcodes
Classical Signal Processing
Encoder–Decoder
Multiscale Drt
Pixelwise Segmentation, et al.
Fecha de publicación: 2023
Publicación seriada: Sensors (Basel, Switzerland)
Resumen: In this work, two methods are proposed for solving the problem of one-dimensional barcode segmentation in images, with an emphasis on augmented reality (AR) applications. These methods take the partial discrete Radon transform as a building block. The first proposed method uses overlapping tiles for obtaining good angle precision while maintaining good spatial precision. The second one uses an encoder-decoder structure inspired by state-of-the-art convolutional neural networks for segmentation while maintaining a classical processing framework, thus not requiring training. It is shown that the second method's processing time is lower than the video acquisition time with a 1024 × 1024 input on a CPU, which had not been previously achieved. The accuracy it obtained on datasets widely used by the scientific community was almost on par with that obtained using the most-recent state-of-the-art methods using deep learning. Beyond the challenges of those datasets, the method proposed is particularly well suited to image sequences taken with short exposure and exhibiting motion blur and lens blur, which are expected in a real-world AR scenario. Two implementations of the proposed methods are made available to the scientific community: one for easy prototyping and one optimised for parallel implementation, which can be run on desktop and mobile phone CPUs.
URI: http://hdl.handle.net/10553/124220
DOI: 10.3390/s23136109
Fuente: Sensors (Basel, Switzerland)[EISSN 1424-8220],v. 23 (13), (Julio 2023)
Colección:Artículos
Adobe PDF (7,65 MB)
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Visitas

34
actualizado el 18-may-2024

Descargas

7
actualizado el 18-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.