Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/124220
Título: | An Encoder-Decoder Architecture within a Classical Signal-Processing Framework for Real-Time Barcode Segmentation | Autores/as: | Gómez-Cárdenes, Óscar Marichal-Hernández, José Gil Son, Jung Young Pérez Jiménez, Rafael Rodríguez-Ramos, José Manuel |
Clasificación UNESCO: | 3325 Tecnología de las telecomunicaciones | Palabras clave: | Barcodes Classical Signal Processing Encoder–Decoder Multiscale Drt Pixelwise Segmentation, et al. |
Fecha de publicación: | 2023 | Publicación seriada: | Sensors (Basel, Switzerland) | Resumen: | In this work, two methods are proposed for solving the problem of one-dimensional barcode segmentation in images, with an emphasis on augmented reality (AR) applications. These methods take the partial discrete Radon transform as a building block. The first proposed method uses overlapping tiles for obtaining good angle precision while maintaining good spatial precision. The second one uses an encoder-decoder structure inspired by state-of-the-art convolutional neural networks for segmentation while maintaining a classical processing framework, thus not requiring training. It is shown that the second method's processing time is lower than the video acquisition time with a 1024 × 1024 input on a CPU, which had not been previously achieved. The accuracy it obtained on datasets widely used by the scientific community was almost on par with that obtained using the most-recent state-of-the-art methods using deep learning. Beyond the challenges of those datasets, the method proposed is particularly well suited to image sequences taken with short exposure and exhibiting motion blur and lens blur, which are expected in a real-world AR scenario. Two implementations of the proposed methods are made available to the scientific community: one for easy prototyping and one optimised for parallel implementation, which can be run on desktop and mobile phone CPUs. | URI: | http://hdl.handle.net/10553/124220 | DOI: | 10.3390/s23136109 | Fuente: | Sensors (Basel, Switzerland)[EISSN 1424-8220],v. 23 (13), (Julio 2023) |
Colección: | Artículos |
Citas SCOPUSTM
1
actualizado el 17-nov-2024
Visitas
34
actualizado el 18-may-2024
Descargas
7
actualizado el 18-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.