Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/124103
DC FieldValueLanguage
dc.contributor.authorGupta, Ankiten_US
dc.contributor.authorMendonça, Fábioen_US
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorRavelo-García, A.en_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.date.accessioned2023-07-31T09:26:56Z-
dc.date.available2023-07-31T09:26:56Z-
dc.date.issued2023en_US
dc.identifier.issn2079-9292en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/124103-
dc.description.abstractCyclic Alternating Pattern (CAP) is a sleep instability marker defined based on the amplitude and frequency of the electroencephalogram signal. Because of the time and intensive process of labeling the data, different machine learning and automatic approaches are proposed. However, due to the low accuracy of the traditional approach and the black box approach of the machine learning approach, the proposed systems remain untrusted by the physician. This study contributes to accurately estimating CAP in a Frequency-Time domain by A-phase and its subtypes prediction by transforming the monopolar deviated electroencephalogram signals into corresponding scalograms. Subsequently, various computer vision classifiers were tested for the A-phase using scalogram images. It was found that MobileNetV2 outperformed all other tested classifiers by achieving the average accuracy, sensitivity, and specificity values of 0.80, 0.75, and 0.81, respectively. The MobileNetV2 trained model was further fine-tuned for A-phase subtypes prediction. To further verify the visual ability of the trained models, Gradcam++ was employed to identify the targeted regions by the trained network. It was verified that the areas identified by the model match the regions focused on by the sleep experts for A-phase predictions, thereby proving its clinical viability and robustness. This motivates the development of novel deep learning based methods for CAP patterns predictions.en_US
dc.languagespaen_US
dc.relation.ispartofElectronics (Switzerland)en_US
dc.sourceElectronics (Switzerland)[EISSN 2079-9292],v. 12 (13), (Julio 2023)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherContinuous Wavelet Transformen_US
dc.subject.otherCyclic Alternating Patternsen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherElectroencephalogramen_US
dc.subject.otherSignal Processingen_US
dc.titleVisual Explanations of Deep Learning Architectures in Predicting Cyclic Alternating Patterns Using Wavelet Transformsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/electronics12132954en_US
dc.identifier.scopus85164811606-
dc.contributor.orcid0000-0002-2310-908X-
dc.contributor.orcid0000-0002-5107-3248-
dc.contributor.orcid0000-0002-7677-0971-
dc.contributor.orcid0000-0002-8512-965X-
dc.contributor.orcid0000-0001-7334-3993-
dc.contributor.authorscopusid57050762000-
dc.contributor.authorscopusid57195946416-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid9634135600-
dc.contributor.authorscopusid7102398975-
dc.identifier.eissn2079-9292-
dc.identifier.issue13-
dc.relation.volume12en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateJulio 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,644
dc.description.jcr2,9
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,5
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Appears in Collections:Artículos
Adobe PDF (5,82 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.