Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/123410
Title: | Desalination Plant for Irrigation Purposes Driven by an Inland Floating Photovoltaic System | Authors: | Del Río Gamero, Beatriz Rodríguez-López, Edgar Schallenberg Rodríguez, Julieta Cristina |
UNESCO Clasification: | 3102 Ingeniería agrícola 310205 Riego 332202 Generación de energía 332205 Fuentes no convencionales de energía |
Keywords: | Canary Islands Desalination Inland Floating Photovoltaic Irrigation Renewable Energy |
Issue Date: | 2023 | Project: | Investigación e innovación hacia la Excelencia en Eficiencia tecnológica, uso de Energías renovables, tecnologías Emergentes y Economía circular en la DESalación | Journal: | Journal of Marine Science and Engineering | Abstract: | In places where water and land are scarce it is vital to look for innovative solutions that can ensure water production for agricultural purposes. This study considers the treatment of water using desalination processes to meet the quality requirements needed for irrigation purposes in agriculture. As the water is stored in a pond, an inland floating photovoltaic (FPV) system is proposed to meet the desalination energy demand. This system would enable energy production without using additional land that could otherwise be used for agricultural purposes. The use of FPV technology also reduces water evaporation, thus avoiding unnecessary energy consumption. To generate enough electricity to treat 12,000 m3/day of water, using an electrodialysis reversal desalination plant, a 1.85 MWp FPV farm is proposed. The results indicate that this FPV farm would generate 3,005,828 kWh per year while avoiding the emission of 58,300 tons of CO2 and the evaporation of 159,950 m3 of water during its 25-year lifetime. Such systems allow higher renewable penetration in the energy mix and preserve the original use of the land. | URI: | http://hdl.handle.net/10553/123410 | ISSN: | 2077-1312 | DOI: | 10.3390/jmse11050905 | Source: | Journal of Marine Science and Engineering [EISSN 2077-1312], v. 11 (5), 905, (Mayo 2023) |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
4
checked on Mar 30, 2025
WEB OF SCIENCETM
Citations
3
checked on Mar 30, 2025
Page view(s)
46
checked on Apr 13, 2024
Download(s)
56
checked on Apr 13, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.