Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/122897
Campo DC Valoridioma
dc.contributor.authorÁlvarez Álvarez,Carmenen_US
dc.contributor.authorFalcón Pulido, Samuelen_US
dc.date.accessioned2023-05-19T15:22:08Z-
dc.date.available2023-05-19T15:22:08Z-
dc.date.issued2023en_US
dc.identifier.issn1556-6501en_US
dc.identifier.urihttp://hdl.handle.net/10553/122897-
dc.description.abstractUniversity teaching practices impact student interest, engagement, and academic performance. This paper presents a study that uses artificial intelligence (AI) to examine students’ preferences for university teaching practices. We asked students in various fields open-ended questions about the best teaching practices they had experienced. Due to the large amount of data obtained, we used the AI-based language model Generative Pretrained Transformer-3 (GPT-3) to analyse the responses. With this model, we sorted students’ testimonies into nine theory-based categories regarding teaching practices. After analysing the reliability of the classifications conducted by GPT-3, we found that the agreement between humans was similar to that observed between humans and the AI model, which supported its reliability. Regarding students’ preferences for teaching practices, the results showed that students prefer practices that focus on (1) clarity and (2) interaction and relationships. These results enable the use of AI-based tools that facilitate the analysis of large amounts of information collected through open methods. At the didactic level, students’ preferences and demand for clear teaching practices (in which ideas and activities are stated and shown without ambiguity) that are based on interaction and relationships (between teachers and students and among students themselves) are demonstrable.en_US
dc.languageengen_US
dc.relation.ispartofEducational Technology Research and Developmenten_US
dc.sourceEducational Technology Research and Development [1556-6501], (2023)en_US
dc.subject580107 Métodos pedagógicosen_US
dc.subject630707 Tecnología y cambio socialen_US
dc.subject.otherTeaching practicesen_US
dc.subject.otherTeaching qualityen_US
dc.subject.otherSatisfactionen_US
dc.subject.otherHigher educationen_US
dc.subject.otherArtificial intelligenceen_US
dc.titleStudents' preferences with university teaching practices: analysis of testimonials with artificial intelligenceen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11423-023-10239-8en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.description.numberofpages16en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-EGBen_US
dc.description.sjr1,706
dc.description.jcr5,0
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.ssciSSCI
dc.description.miaricds11,0
dc.description.erihplusERIH PLUS
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IATEXT: Didáctica, Aprendizaje y Motivación en Contextos Específicos-
crisitem.author.deptIU de Análisis y Aplicaciones Textuales-
crisitem.author.orcid0000-0003-3314-1945-
crisitem.author.parentorgIU de Análisis y Aplicaciones Textuales-
crisitem.author.fullNameÁlvarez Álvarez,Carmen-
crisitem.author.fullNameFalcón Pulido, Samuel-
Colección:Artículos
Adobe PDF (597,99 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.