Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/121975
Title: | Dynamics of Photo‐Induced Surface Oxygen Vacancies in Metal‐Oxide Semiconductors Studied Under Ambient Conditions | Authors: | Glass, Daniel Cortés, Emiliano Ben‐Jaber, Sultan Brick, Thomas Peveler, William J. Blackman, Christopher S. Howle, Christopher R. Quesada Cabrera, Raúl Parkin, Ivan P. Maier, Stefan A. |
UNESCO Clasification: | 2306 Química orgánica 230117 Espectroscopia Ramn 230618 Estructuras de las moléculas orgánicas |
Keywords: | Defects Oxygen vacancy dynamics Surface-enhanced Raman spectroscopy (SERS) Titanium oxide |
Issue Date: | 2019 | Journal: | Advanced Science | Abstract: | Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique commonly used in the detection of traces of organic molecules. The mechanism of SERS is of a dual nature, with Raman scattering enhancements due to a combination of electromagnetic (EM) and chemical contributions. In conventional SERS, the EM component is largely responsible for the enhancement, with the chemical contribution playing a less significant role. An alternative technique, called photo-induced enhanced Raman spectroscopy (PIERS) has been recently developed, using a photo-activated semiconductor substrate to give additional chemical enhancement of Raman bands over traditional SERS. This enhancement is assigned to surface oxygen vacancies (Vo) formed upon pre-irradiation of the substrate. In this work, the exceptional chemical contribution in PIERS allows for the evaluation of atomic Vo dynamics in metal oxide surfaces. This technique is applied to study the formation and healing rates of surface-active Vo in archetypical metal-oxide semiconductors, namely, TiO2, WO3, and ZnO. Contrary to conventional analytical tools, PIERS provides intuitive and valuable information about surface stability of atomic defects at ambient pressure and under operando conditions, which has important implications in a wide range of applications including catalysis and energy storage materials. | URI: | http://hdl.handle.net/10553/121975 | ISBN: | 21983844 | ISSN: | 2198-3844 | DOI: | 10.1002/advs.201901841 | Source: | Advanced Science [ISSN 2198-3844], v. 6(22) |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
82
checked on Nov 17, 2024
WEB OF SCIENCETM
Citations
82
checked on Nov 17, 2024
Page view(s)
17
checked on Mar 16, 2024
Download(s)
4
checked on Mar 16, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.