Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121566
Título: Exploiting Temporal Coherence to Improve Person Re-identification
Autores/as: Santana, Oliverio J. 
Lorenzo-Navarro, Javier 
Freire-Obregón, David 
Hernández-Sosa, Daniel 
Isern-González, José
Castrillón-Santana, Modesto 
Clasificación UNESCO: 1203 Ciencia de los ordenadores
Palabras clave: Computer Vision
Person Re-Identification
Sporting Event
Temporal Coherence
Ultra-Distance Race
Fecha de publicación: 2023
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 11th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2022) 
Resumen: The uncontrolled characteristics of long-term scenarios, like ultra-running competitions, are challenging for person re-identification approaches based on computer vision methods. State-of-the-art techniques have reported hardly moderate success for whole-body runner re-identification due to the existence of distinct illumination conditions, as well as changes of clothing and/or accessories like backpacks, caps, and sunglasses. This paper explores integrating these biometric cues with the particular spatio-temporal context information present in the competition live track system. Our results confirm the significance of this strategy to limit the gallery size and boost re-identification performance.
URI: http://hdl.handle.net/10553/121566
ISBN: 9783031245374
ISSN: 0302-9743
DOI: 10.1007/978-3-031-24538-1_7
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 13822 LNCS, p. 134-151, (Enero 2023)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.