Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121504
Título: A Sound Events Detection and Localization System based on YAMNet Model and BLE Beacons
Autores/as: Mesa-Cantillo, Carlos M.
Alonso-González, Itziar G. 
Quintana-Suárez, Miguel A. 
Ley-Bosch, Carlos 
Ramírez-Casañas, Carlos 
Sánchez-Medina, Javier J. 
Sánchez-Rodríguez, David 
Clasificación UNESCO: 332505 Radiocomunicaciones
Palabras clave: sound event classification
beacons
machine learning
yamnet
Fecha de publicación: 2023
Publicación seriada: International Conference on Wireless and Mobile Communications (19.Barcelona.2023)
Resumen: Automatic recognition of sound events by computers is a requirement for several emerging applications, such as surveillance, automatic listening, and noise source identification. Acoustic Event Detection (AED) has the objective of knowing the identity of sounds and their temporal position in signals captured by one or several microphones. In this work, a pretrained Yet Another Mobile Network (YAMNet) model is used to perform real-time audio classification. This model is an audio event classifier that takes the audio waveform as input and makes independent predictions for each of the 521 audio events in the AudioSet ontology. The model uses the MobileNet v1 architecture and was trained using the AudioSet corpus. By utilizing a Raspberry Pi 3, a commercial microphone and a set of beacons, this system detects when an event occurs. Thus, the system can detect where and what event has been detected and send it to a database. After that, an update is made in the database and a notification can be sent to the users of a specific application. This information may be useful for people with disabilities to be warned of danger in nearby areas.
URI: http://hdl.handle.net/10553/121504
ISSN: 2308-4219
Fuente: https://www.thinkmind.org/index.php?view=article&articleid=icwmc_2023_1_10_20007
Colección:Artículos
Adobe PDF (206,28 kB)
Vista completa

Visitas

325
actualizado el 18-may-2024

Descargas

472
actualizado el 18-may-2024

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.