Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121333
Campo DC Valoridioma
dc.contributor.authorCuesta Moreno, Pedro Damiánen_US
dc.contributor.authorJiménez, Jen_US
dc.contributor.authorAbderramán, J.en_US
dc.date.accessioned2023-03-17T09:20:41Z-
dc.date.available2023-03-17T09:20:41Z-
dc.date.issued2000en_US
dc.identifier.urihttp://hdl.handle.net/10553/121333-
dc.description.abstractThe strategy of domain's reduction and the strategy of multirecombination are based on previous works 1,2 and have achieved some promising results. Like continuation has been proposed to combine both strategies for problems of real functions optimization. The strategy of domains's reduction is based on taking advantage the information that provide the better objective functions of a statistics sample to go reducing the domain. While the domain is reduced we go ourselves approximating to the optimum. The strategy of multirecombination is based on taking advantage the non-linear interactions between chromosomes. The non-linear interactions are produced when are accomplished several recombinations (crossovers and mutations) in populations, without selection processes; arrived to a point we select the better strings opening step to a new population. The multirecombination can accelerate or stop the search of the optimum. Both strategies' combination consists of launching a statistics sample that use multirecombination instead of the usual recombination of Simple Genetic Algorithm, SGA, with the idea that the mutirecombination in some launchings carry us toward proximities of the optimum, and the domain reduction permit us to locate with the wished precision. In this work is presented a study of the mixed strategy. In a first section are studied problems with connected domains; after, problems with not connected domains. The incorporation of this last is due to the existence of practical problems with constraints that produce this type of domains. Customary academics test functions and comparisons with other evolutionary algorithms are showed.en_US
dc.languageengen_US
dc.subject12 Matemáticasen_US
dc.subject.otherGenetic algorithmsen_US
dc.titleMixed strategy in genetic algorithms: Domains reduction and Multirecombinationen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceEuropean Congress on Computational Methods in Applied Sciences and Engineering Barcelona 2000en_US
dc.identifier.urlhttps://www.semanticscholar.org/paper/MIXED-STRATEGY-IN-GENETIC-ALGORITHMS%3A-DOMAINS-AND-Jim%C3%A9nez-Cuesta/18d8c08b43e836604b62394e1db04d25b3c295c3-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.fullNameCuesta Moreno, Pedro Damián-
Colección:Actas de congresos
Vista resumida

Visitas

30
actualizado el 10-ago-2024

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.