Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121014
Campo DC Valoridioma
dc.contributor.authorSuárez Ramírez, Jonay-
dc.contributor.authorBetancor-Del-Rosario, Alejandro-
dc.contributor.authorSantana Cedrés, Daniel-
dc.contributor.authorMonzón, Nelson-
dc.date.accessioned2023-03-09T13:40:54Z-
dc.date.available2023-03-09T13:40:54Z-
dc.date.issued2023-
dc.identifier.isbn978-989-758-634-7-
dc.identifier.issn2184-4321-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/121014-
dc.description.abstractArtificial Intelligence (AI) has become a revolutionary tool in multiple fields in the last decade. The appearance of hardware with improved capabilities has paved the way to apply image processing based on Deep Neural Networks to more complex tasks with lower costs. Nevertheless, some environments, such as remote areas, require the use of edge devices. Consequently, the algorithms must be suited to platforms with more constrained resources. This is crucial in the development of AI systems in seaside zones. In our work, we compare a wide range of recent state-of-the-art Deep Learning models for Semantic Segmentation over edge devices. Such segmentation techniques provide a better scene understanding, in particular in complex areas, providing pixel-level detection and classification. In this regard, coastal environments represent a clear example, where more specific tasks can be performed from these approaches, such as littering detection, surveillance, and shoreline changes, among many others.-
dc.languageeng-
dc.publisherSciTePress Digital Library-
dc.relation"A la ULPGC para análisis matemático de imágenes por CTIM"-
dc.relation.ispartofProceedings Of The International Joint Conference On Computer Vision, Imaging And Computer Graphics Theory And Applications-
dc.sourceProceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5, p. 409-418-
dc.subject3304 Tecnología de los ordenadores-
dc.subject.otherComputer Vision-
dc.subject.otherDeep Learning-
dc.subject.otherSemantic Segmentation-
dc.subject.otherSeaside Scenes-
dc.subject.otherEdge Devices-
dc.titleExploring Deep Learning Capabilities for Coastal Image Segmentation on Edge Devices-
dc.typeinfo:eu-repo/semantics/conferenceobject-
dc.typeConference Object-
dc.relation.conference18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023)-
dc.identifier.doi10.5220/0011615400003417-
dc.identifier.scopus85184958341-
dc.contributor.orcid0000-0002-6914-8308-
dc.contributor.orcid0000-0003-0591-9553-
dc.contributor.orcid0000-0003-2032-5649-
dc.contributor.orcid0000-0003-0571-9068-
dc.contributor.authorscopusid58885810800-
dc.contributor.authorscopusid58885856500-
dc.contributor.authorscopusid54974008500-
dc.contributor.authorscopusid55749010500-
dc.identifier.eissn2184-4321-
dc.description.lastpage418-
dc.description.firstpage409-
dc.relation.volume5-
dc.investigacionIngeniería y Arquitectura-
dc.type2Actas de congresos-
dc.description.numberofpages10-
dc.utils.revision-
dc.date.coverdateFebrero 2023-
dc.identifier.conferenceidevents152722-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-INF-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2032-5649-
crisitem.author.orcid0000-0003-0571-9068-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSuárez Ramírez, Jonay-
crisitem.author.fullNameSantana Cedrés, Daniel Elías-
crisitem.author.fullNameMonzón López, Nelson Manuel-
crisitem.project.principalinvestigatorTrujillo Pino, Agustín Rafael-
crisitem.event.eventsstartdate21-09-2020-
crisitem.event.eventsenddate25-09-2020-
Colección:Actas de congresos
Adobe PDF (47,76 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.