Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121012
Título: Heat and mass transfer prediction in fluidized beds of cooling and desalination systems by AI approach
Autores/as: Krzywanski, J.
Skrobek, D.
Zylka, A.
Grabowska, K.
Kulakowska, A.
Sosnowski, M.
Nowak, W.
Blanco Marigorta, Ana María 
Clasificación UNESCO: 331005 Ingeniería de procesos
Palabras clave: Adsorption cooling-desalination systems
Artificial Intelligence
Low-grade heat
Machine learning
Poligeneration, et al.
Fecha de publicación: 2023
Publicación seriada: Applied Thermal Engineering 
Resumen: Since greenhouse gas emissions and freshwater scarcity are the top global risks, looking for new methods to reduce CO2 emissions and increase drinking water production is becoming a significant civilization challenge. One of the promising approaches to addressing these dares has proven to be adsorption cooling and desalination systems powered with low-grade thermal energy, including waste heat of the near ambient temperature. Due to poor heat and mass transfer and the low performance of the existing adsorption chiller with conventional packed beds, the innovative concept of fluidized beds application was elaborated on in the paper. Furthermore, the article introduces a novel approach based on artificial intelligence methods for predicting heat and mass transfer within the adsorption bed of cooling and desalination systems. Silica gel, as the parent adsorption material, and two additives, aluminium and carbon nanotubes, with different shares, are applied in tests. The water vapour uptake and the convective heat transfer coefficient, measured during experiments and predicted by the developed models, are investigated and compared. The data evaluated by models are in good agreement with experimental results. The developed models allow the study of input parameters' effect on the outputs and optimize the operating strategy of the bed. The highest water vapour uptake and the convective heat transfer coefficient, which can be obtained for the considered range of input parameters, are equal to 1.65 g/g and 1212.62 W/m2 K, respectively, and can be achieved only due to the fluidization of the adsorption bed.
URI: http://hdl.handle.net/10553/121012
ISSN: 1359-4311
DOI: 10.1016/j.applthermaleng.2023.120200
Fuente: Applied Thermal Engineering [ISSN 1359-4311], v. 225, 120200, (Mayo 2023)
Colección:Artículos
Vista completa

Citas SCOPUSTM   

48
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

41
actualizado el 17-nov-2024

Visitas

27
actualizado el 02-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.