Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/120735
Campo DC Valoridioma
dc.contributor.authorRosales-Asensio, Enriqueen_US
dc.contributor.authorIcaza, Danielen_US
dc.contributor.authorGonzález-Cobos, Noemien_US
dc.contributor.authorBorge-Diez, Daviden_US
dc.date.accessioned2023-02-27T08:50:28Z-
dc.date.available2023-02-27T08:50:28Z-
dc.date.issued2023en_US
dc.identifier.issn2352-7102en_US
dc.identifier.urihttp://hdl.handle.net/10553/120735-
dc.description.abstractThis research analyzes the combined peak reduction and resilience increase in critical buildings through the use of microgrids configured using a specific control system to provide correct power quality for local loads that can be either connected or disconnected from the grid, operating grid-connected or islanded mode. In case of grid failure, energy storage combined with one or several local generators can provide backup power and consider both conventional and renewable energy systems. This research focuses on the design of building energy systems that are able to maintain the energy supply and establishes a methodology to evaluate the resilience benefits of a microgrid integrated into critical buildings when power outages occur and the particular case of a hospital building is presented. The optimization of the dispatch and heating and cooling strategies are analyzed and a case study characterizing an electric polygeneration microgrid feeding critical loads is presented. Results show the benefits and the increased energy resilience achieved when using solar PV, electrochemical batteries, combined heat and power, TES water tanks, and absorption chillers and propose a design and optimization scheme that can be applied for similar buildings and extend to any facility with critical loads. Results show that these microgrids can be optimally designed to improve the resilience of critical energy systems and, simultaneously, achieve economic benefits. Results show that in the event of an outage the positive monetary effects last longer than the duration of the outage.en_US
dc.languageengen_US
dc.relation.ispartofJournal of Building Engineeringen_US
dc.sourceJournal of Building Engineering [ISSN 2352-7102], v. 68, 106096, (Junio 2023)en_US
dc.subject3322 Tecnología energéticaen_US
dc.titlePeak load reduction and resilience benefits through optimized dispatch, heating and cooling strategies in buildings with critical microgridsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jobe.2023.106096en_US
dc.contributor.orcid0000-0003-4112-5259-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr1,397
dc.description.jcr6,4
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,3
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Eléctrica-
crisitem.author.orcid0000-0003-4112-5259-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameRosales Asensio, Enrique-
Colección:Artículos
Vista resumida

Citas de WEB OF SCIENCETM
Citations

10
actualizado el 24-nov-2024

Visitas

92
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.