Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/120413
Title: Existence and uniqueness of positive solutions to a class of singular integral boundary value problems of fractional order
Authors: Caballero, J. 
Harjani, J. 
Sadarangani, K. 
UNESCO Clasification: 120299 Otras (especificar)
120219 Ecuaciones diferenciales ordinarias
Keywords: Fixed point theorem
Fractional boundary value problem
Integral boundary conditions
Positive solution
Issue Date: 2023
Journal: Mediterranean Journal of Mathematics 
Abstract: In this paper, we are interested in the study of the existence and uniqueness of positive solutions to the nonlinear singular fractional differential equation D0+αu(t)+f(t,u(t),(Hu)(t))=0 with 0 < t< 1 , where D0+α denotes the classical Riemmann Liouville derivative, under the integral boundary conditions u(0) = u′(0) = ⋯ = u(n-2)(0) = 0 and u(1)=λ∫01u(s)ds, where λ∈ (0 , α) , H is an operator defined on C[0 , 1] into itself and f: (0 , 1] × [0 , ∞) × [0 , ∞) → [0 , ∞) is a continuous function which can have a singularity at (0, x, y). To state our results, we use a fixed point theorem recently proved. Finally, we present some examples illustrating the results obtained.
URI: http://hdl.handle.net/10553/120413
ISSN: 1660-5446
DOI: 10.1007/s00009-023-02294-5
Source: Mediterranean Journal of Mathematics [ISSN 1660-5446], v. 20 (2), (Abril 2023)
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

1
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 17, 2024

Page view(s)

49
checked on Feb 3, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.