Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/119800
DC FieldValueLanguage
dc.contributor.authorQuevedo Reina, Románen_US
dc.contributor.authorÁlamo Meneses, Guillermo Manuelen_US
dc.contributor.authorPadrón Hernández, Luis Albertoen_US
dc.contributor.authorAznárez González, Juan Joséen_US
dc.contributor.authorMaeso Fortuny, Orlando Fcoen_US
dc.date.accessioned2022-12-19T10:25:09Z-
dc.date.available2022-12-19T10:25:09Z-
dc.date.issued2022en_US
dc.identifier.isbn978-84-123222-9-3en_US
dc.identifier.urihttp://hdl.handle.net/10553/119800-
dc.description.abstractIn order to determine the flexibility of pile foundations, appropiate models that include the soil-pile interaction mechanism should be considered. These types of models are usually complex and involve a high computational cost, making it difficult to transfer knowledge to other applications. In the literature, simplified expressions (e.g. [1, 2]) have been proposed to evaluate the stiffness of the piles in an efficient way, admitting some uncertainty in the result. The objective of this work is to build a surrogate model based on artificial neural networks (ANN) capable of predicting the stiffness of a pile foundation. A dataset is generated to train the ANN. This synthetic data include the variables that define the foundation and the surrounding soil, and the foundation stiffness, which is evaluated through a previously developed continuous formulation [3]. Comparing the ANN predictions with the results obtained through the numerical tool, its potential to act as surrogate model is observed. The proposed ANN can be used to efficiently estimate the flexibility of pile foundation, without a significant loss of accuracy with respect to rigorous soil-pile interaction models. This work has been performed within financial support from research project PID2020- 120102RB-I00, funded by the Agencial Estatal de Investigaci´on of Spain, MCIN/AEI/ 10.13039/501100011033.en_US
dc.languageengen_US
dc.publisherInternational Center for Numerical Methods in Engineering (CIMNE)en_US
dc.sourceCongress on Numerical Methods in Engineering (CMN 2022), p. 280en_US
dc.subjectMateriasen_US
dc.titleCharacterization of pile stiffness using Artificial Neural Networksen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceCongress on Numerical Methods in Engineering (CMN 2022)en_US
dc.description.firstpage280en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Mecánica de los Medios Continuos y Estructuras-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR SIANI: Mecánica de los Medios Continuos y Estructuras-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.deptGIR SIANI: Mecánica de los Medios Continuos y Estructuras-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.deptGIR SIANI: Mecánica de los Medios Continuos y Estructuras-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.deptGIR SIANI: Mecánica de los Medios Continuos y Estructuras-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.orcid0000-0003-4228-0031-
crisitem.author.orcid0000-0001-5975-7145-
crisitem.author.orcid0000-0002-5693-051X-
crisitem.author.orcid0000-0003-4576-7304-
crisitem.author.orcid0000-0002-4102-9585-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameQuevedo Reina, Román-
crisitem.author.fullNameÁlamo Meneses, Guillermo Manuel-
crisitem.author.fullNamePadrón Hernández, Luis Alberto-
crisitem.author.fullNameAznárez González, Juan José-
crisitem.author.fullNameMaeso Fortuny, Orlando Francisco-
crisitem.event.eventsstartdate12-09-2022-
crisitem.event.eventsenddate14-09-2022-
Appears in Collections:Actas de congresos
Adobe PDF (90,63 kB)
Show simple item record

Page view(s)

49
checked on Jun 22, 2024

Download(s)

12
checked on Jun 22, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.