Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/119794
Campo DC Valoridioma
dc.contributor.authorPadrón Medina, Miguel Ángelen_US
dc.contributor.authorPlaza De La Hoz, Ángelen_US
dc.date.accessioned2022-12-19T10:22:13Z-
dc.date.available2022-12-19T10:22:13Z-
dc.date.issued2022en_US
dc.identifier.isbn978-84-123222-9-3en_US
dc.identifier.urihttp://hdl.handle.net/10553/119794-
dc.description.abstractIn three dimensions the two most natural ways to subdivide a tetrahedron into subtetrahedra are bisection and octasection. Octasection methods simultaneously create eight descendants for each tetrahedron. After cutting off four subtetrahedra at the corners, the remaining octahedron can be subdivided further in three different ways corresponding to the three possible diagonals of the parellelograms of the interior of the octahedron, generating four more subtetrahedra. This interior diagonal has to be chosen carefully in order to preserve the non-degenaration of the elements, and also to satisfy the stability condition [3]. In general, only the four subtetrahedra located at the corners are similar to their father, but not the interior ones. Note that the eight subtetrahedra are of equal volume. We consider here the octasection method of the triangulation of the 3D unit cube into six tetrahedra using only the eight given vertices [1, 2]. Besides, this method may be implemented to convert a mesh from hexahedral to tetrahedral elements. We study the number of similarity classes generated and the non-degenerancy of the triangulation of the 3D unit cube by the octasection method, as well as, how regular or stable can be the mesh obtained and the quality of the subtetrahedra generated.en_US
dc.languageengen_US
dc.publisherInternational Center for Numerical Methods in Engineering (CIMNE)en_US
dc.sourceCongress on Numerical Methods in Engineering (CMN 2022), p. 432en_US
dc.subjectMateriasen_US
dc.titleSimilarity classes generated by the Octasection method applied to the triangulation of the 3D unit cube into six tetrahedraen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceCongress on Numerical Methods in Engineering (CMN 2022)en_US
dc.description.firstpage432en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0001-5493-3090-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePadrón Medina, Miguel Ángel-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
crisitem.event.eventsstartdate12-09-2022-
crisitem.event.eventsenddate14-09-2022-
Colección:Actas de congresos
Adobe PDF (68,86 kB)
Vista resumida

Visitas

60
actualizado el 03-ago-2024

Descargas

26
actualizado el 03-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.