Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/119793
Campo DC Valoridioma
dc.contributor.authorQuevedo Reina, Románen_US
dc.contributor.authorÁlamo Meneses, Guillermo Manuelen_US
dc.contributor.authorPadrón Hernández, Luis Albertoen_US
dc.contributor.authorAznárez González, Juan Joséen_US
dc.contributor.authorMaeso Fortuny, Orlando Fcoen_US
dc.date.accessioned2022-12-19T10:21:49Z-
dc.date.available2022-12-19T10:21:49Z-
dc.date.issued2022en_US
dc.identifier.isbn978-84-123222-9-3en_US
dc.identifier.urihttp://hdl.handle.net/10553/119793-
dc.description.abstractReducing the cost of the support structure of offshore wind turbines is an important objective to promote the development of this technology. In the design stage, the aim is to obtain a structure that verifies the different technical requirements imposed by the regulations and minimizes the amount of material used. In the literature, there are authors who manage to obtain efficient designs by approaching the process as an optimization problem for specific configurations (e.g. [1, 2]). However, introducing structural calculation and verification in an iterative process, such as optimization, considerably increases the computational cost of this process. For this reason, a surrogate model based on Artificial Neural Networks (ANN) is proposed to predict whether a jacket support structure would verify the technical requirements based on the characteristics of the wind turbine and the site. A dataset is generated to train the ANN. These synthetic data collect the characteristics of the OWT-jacket-foundation system and the site; as well as the result of the technical checks, obtained by means of a finite element structural model. Analysing the confusion matrix of the test data, it is observed that this type of tool allows to establish the technical feasibility of a jacket support structure in a sufficiently precise way. Thus, the computational costs in the pre-design stage can be reduced through the use of Machine Learning techniques, such as ANNs. This work has been performed within financial support from research project PID2020- 120102RB-I00, funded by the Agencial Estatal de Investigaci´on of Spain, MCIN/AEI/ 10.13039/501100011033.en_US
dc.languageengen_US
dc.publisherInternational Center for Numerical Methods in Engineering (CIMNE)en_US
dc.sourceCongress on Numerical Methods in Engineering (CMN 2022), p. 290en_US
dc.subjectMateriasen_US
dc.titleStructural evaluation of offshore wind turbines supported on a jacket using Artificial Neural Networksen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceCongress on Numerical Methods in Engineering (CMN 2022)en_US
dc.description.firstpage290en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Mecánica de los Medios Continuos y Estructuras-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR SIANI: Mecánica de los Medios Continuos y Estructuras-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.deptGIR SIANI: Mecánica de los Medios Continuos y Estructuras-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.deptGIR SIANI: Mecánica de los Medios Continuos y Estructuras-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.deptGIR SIANI: Mecánica de los Medios Continuos y Estructuras-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.orcid0000-0003-4228-0031-
crisitem.author.orcid0000-0001-5975-7145-
crisitem.author.orcid0000-0002-5693-051X-
crisitem.author.orcid0000-0003-4576-7304-
crisitem.author.orcid0000-0002-4102-9585-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameQuevedo Reina, Román-
crisitem.author.fullNameÁlamo Meneses, Guillermo Manuel-
crisitem.author.fullNamePadrón Hernández, Luis Alberto-
crisitem.author.fullNameAznárez González, Juan José-
crisitem.author.fullNameMaeso Fortuny, Orlando Francisco-
crisitem.event.eventsstartdate12-09-2022-
crisitem.event.eventsenddate14-09-2022-
Colección:Actas de congresos
Adobe PDF (90,79 kB)
Vista resumida

Visitas

91
actualizado el 28-sep-2024

Descargas

28
actualizado el 28-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.