Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/119787
Campo DC Valoridioma
dc.contributor.authorGreiner Sánchez, David Juanen_US
dc.contributor.authorRibeiro, Diogoen_US
dc.contributor.authorYepes, Víctoren_US
dc.date.accessioned2022-12-19T10:18:34Z-
dc.date.available2022-12-19T10:18:34Z-
dc.date.issued2022en_US
dc.identifier.isbn978-84-123222-9-3en_US
dc.identifier.urihttp://hdl.handle.net/10553/119787-
dc.description.abstractThe main objective of this symposium is to bring together researchers and to generate interest in presenting papers on new approaches, in the field of optimization, metaheuristics and evolutionary algorithms in civil engineering. The communications must address metaheuristics, evolutionary algorithms and other optimization techniques, applied in solving optimum design problems in civil engineering and related topics [1]. Evolutionary algorithms are an interdisciplinary research area comprising several paradigms inspired by the Darwinian principle of evolution. The current stage of research considers, among others, the following paradigms: Genetic Algorithms, Genetic Programming, Evolution Strategies, Differential Evolution, etc. in addition to other metaheuristic paradigms such as Particle Swarm Optimization or Ant Colony Optimization. Applications of these optimization methods and others (e.g. [2]), in civil engineering are welcomed, both for single-objective and multi-objective optimization problems [3,4]. Topics to be covered (but are not limited to) are: In the civil engineering area, contents related to structural design (e.g.: concrete and/or steel structures, etc.), geotechnics, acoustics, hydraulics, and infrastructure are welcome. In the construction management area, related content can be project management, planning, coordination and control of projects, reliability, cost and time management, among others. Development aspects such as including surrogate modeling, parallelization, hybridization, performance comparisons among methods, etc., are encouraged.en_US
dc.languageengen_US
dc.publisherInternational Center for Numerical Methods in Engineering (CIMNE)en_US
dc.sourceCongress on Numerical Methods in Engineering (CMN 2022), p. 138en_US
dc.subjectMateriasen_US
dc.titleThematic Session 07: Optimization, Metaheuristics and Evolutionary Algorithms in Civil Engineeringen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceCongress on Numerical Methods in Engineering (CMN 2022)en_US
dc.description.firstpage138en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.orcid0000-0002-4132-7144-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameGreiner Sánchez, David Juan-
crisitem.event.eventsstartdate12-09-2022-
crisitem.event.eventsenddate14-09-2022-
Colección:Actas de congresos
Adobe PDF (216,61 kB)
Vista resumida

Visitas

77
actualizado el 28-sep-2024

Descargas

32
actualizado el 28-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.