Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/119300
Campo DC Valoridioma
dc.contributor.authorQuintana Quintana, Lauraen_US
dc.contributor.authorOrtega Sarmiento, Samuelen_US
dc.contributor.authorLeón Martín, Sonia Raquelen_US
dc.contributor.authorFabelo Gómez, Himar Antonioen_US
dc.contributor.authorBalea Fernandez, Francisco Javieren_US
dc.contributor.authorSauras, Estheren_US
dc.contributor.authorLejeune, Maryleneen_US
dc.contributor.authorBosch, Ramónen_US
dc.contributor.authorLopez, Carlosen_US
dc.contributor.authorMarrero Callicó, Gustavo Ivánen_US
dc.contributor.editorLevenson, Richard M.-
dc.contributor.editorTomaszewski, John E.-
dc.contributor.editorWard, Aaron D.-
dc.date.accessioned2022-11-21T13:12:16Z-
dc.date.available2022-11-21T13:12:16Z-
dc.date.issued2022en_US
dc.identifier.isbn9781510649538en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/119300-
dc.description.abstractHyperspectral (HS) imaging (HSI) is a novel technique that allows a better understanding of materials, being an improvement respect to other imaging modalities in multiple applications. Specifically, HSI technology applied to breast cancer histology, could significantly reduce the time of tumor diagnosis at the histopathology department. First, histological samples from twelve different breast cancer patients have been prepared and examined. Second, they were digitally scanned, using RGB (Red-Green-Blue) whole-slide imaging, and further annotated at cell level. Then, the annotated regions were captured with an HS microscopic acquisition system at 20× magnification, covering the 400-1000 nm spectral range. The HS data was registered (through synthetic RGB images) to the whole-slide images, allowing the transfer of accurate annotations made by pathologists to the HS image and extract each annotated cell from such image. Then, both spectral and spatial-spectral classifications were carried out to automatically detect tumor cells from the rest of the coexisting cells in the breast tissue (fibroblasts and lymphocytes). In this work, different supervised classifiers have been employed, namely kNN (k-Nearest-Neighbors), Random Forest, DNN (Deep Neural Network), Support Vector Machines (SVM) and CNN (Convolutional Neural Network). Test results for tumor cells vs. fibroblast classification show that the kNN performed with the best sensitivity/specificity (64/52%) trade-off and the CNN achieved the best sensitivity and AUC results (96% and 0.91, respectively). Moreover, at the tumor cells vs. lymphocyte classification, kNN also provided the best sensitivity-specificity ratio (58.47/58.86%) and an F1-score of 74.12%. The SVM algorithm also provided a high F-score result (70.38%). In conclusion, several machine learning algorithms provide promising results for cell classification in breast cancer tissue and so, future work must include these discoveries for faster cancer diagnosis.en_US
dc.languageengen_US
dc.publisherSPIE-int Soc Optical Engineeringen_US
dc.relationTalent Imágenes Hiperespectrales Para Aplicaciones de Inteligencia Artificialen_US
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineeringen_US
dc.sourceProceedings of SPIE - The International Society for Optical Engineering [ISSN 0277-786X], v. 12039, 120390E, (2022)en_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject.otherHyperspectral microscopyen_US
dc.subject.otherWhole-slideen_US
dc.subject.otherDigital pathologyen_US
dc.subject.otherArtificial intelligenceen_US
dc.subject.otherBreast canceren_US
dc.titleIn the use of Artificial Intelligence and Hyperspectral Imaging in Digital Pathology for Breast Cancer Cell Identificationen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConference proceedingsen_US
dc.relation.conferenceMedical Imaging 2022: Digital and Computational Pathologyen_US
dc.identifier.doi10.1117/12.2611419en_US
dc.identifier.scopus2-s2.0-85132813808-
dc.identifier.isiWOS:000838055900011-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.authorscopusid57226830782-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid57212456639-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid57221266705-
dc.contributor.authorscopusid57763802600-
dc.contributor.authorscopusid9636657600-
dc.contributor.authorscopusid57577586900-
dc.contributor.authorscopusid55550735500-
dc.contributor.authorscopusid56006321500-
dc.relation.volume12039en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.contributor.wosstandardLevenson, Richard M.-
dc.contributor.wosstandardTomaszewski, John E.-
dc.contributor.wosstandardWard, Aaron D.-
dc.contributor.wosstandardLevenson, Richard M.-
dc.contributor.wosstandardTomaszewski, John E.-
dc.contributor.wosstandardWard, Aaron D.-
dc.contributor.wosstandardLevenson, Richard M.-
dc.contributor.wosstandardTomaszewski, John E.-
dc.contributor.wosstandardWard, Aaron D.-
dc.date.coverdateEnero 2022en_US
dc.identifier.conferenceidevents149009-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,166
dc.description.sjrq-
dc.description.miaricds6,5
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
crisitem.event.eventsstartdate10-09-2021-
crisitem.event.eventsenddate14-09-2021-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Psicología, Sociología y Trabajo Social-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-1154-6490-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-4287-3200-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0003-2028-0858-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameQuintana Quintana, Laura-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameLeón Martín,Sonia Raquel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameBalea Fernandez, Francisco Javier-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Visitas

154
actualizado el 01-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.