Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/119032
Título: Cylindrical implosion platform for the study of highly magnetized plasmas at Laser MegaJoule
Autores/as: Pérez-Callejo, G.
Vlachos, C.
Walsh, C. A.
Florido Hernández, Ricardo Jesús 
Bailly-Grandvaux, M.
Vaisseau, X.
Suzuki-Vidal, F.
McGuffey, C.
Beg, F. N.
Bradford, P.
Ospina-Bohórquez, V.
Batani, D.
Raffestin, D.
Colaïtis, A.
Tikhonchuk, V.
Casner, A.
Koenig, M.
Albertazzi, B.
Fedosejevs, R.
Woolsey, N.
Ehret, M.
Debayle, A.
Loiseau, P.
Calisti, A.
Ferri, S.
Honrubia, J.
Kingham, R.
Mancini, R. C.
Gigosos, M. A.
Santos, J. J.
Clasificación UNESCO: 22 Física
220410 Física de plasmas
Fecha de publicación: 2022
Publicación seriada: Physical review. E 
Resumen: Investigating the potential benefits of the use of magnetic fields in inertial confinement fusion experiments has given rise to experimental platforms like the Magnetized Liner Inertial Fusion approach at the Z-machine (Sandia National Laboratories) or its laser-driven equivalent at OMEGA (Laboratory for Laser Energetics). Implementing these platforms at MegaJoule-scale laser facilities, such as the Laser MegaJoule (LMJ) or the National Ignition Facility (NIF), is crucial to reaching self-sustained nuclear fusion and enlarges the level of magnetization that can be achieved through a higher compression. In this paper, we present a complete design of an experimental platform for magnetized implosions using cylindrical targets at LMJ. A seed magnetic field is generated along the axis of the cylinder using laser-driven coil targets, minimizing debris and increasing diagnostic access compared with pulsed power field generators. We present a comprehensive simulation study of the initial B field generated with these coil targets, as well as two-dimensional extended magnetohydrodynamics simulations showing that a 5 T initial B field is compressed up to 25 kT during the implosion. Under these circumstances, the electrons become magnetized, which severely modifies the plasma conditions at stagnation. In particular, in the hot spot the electron temperature is increased (from 1 keV to 5 keV) while the density is reduced (from 40g/cm3 to 7g/cm3). We discuss how these changes can be diagnosed using x-ray imaging and spectroscopy, and particle diagnostics. We propose the simultaneous use of two dopants in the fuel (Ar and Kr) to act as spectroscopic tracers. We show that this introduces an effective spatial resolution in the plasma which permits an unambiguous observation of the B-field effects. Additionally, we present a plan for future experiments of this kind at LMJ.
URI: http://hdl.handle.net/10553/119032
ISSN: 2470-0045
DOI: 10.1103/PhysRevE.106.035206
Fuente: Physical review. E [ISSN 2470-0045], v. 106 (3), 035206, (Septiembre 2022)
Colección:Artículos
Adobe PDF (7,45 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.