Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/118981
Title: The shortest-edge duplication of triangles
Authors: Padrón Medina, Miguel Ángel 
Perdomo, Francisco 
Plaza, Ángel 
Suárez, Jose Pablo 
UNESCO Clasification: 120601 Construcción de algoritmos
1210 Topología
Keywords: Triangulations
Shortest edge
Finite element method
Triangle shape
Issue Date: 2022
Journal: Mathematics 
Abstract: We introduce a new triangle transformation, the shortest-edge (SE) duplication, as a natural way of mesh derefinement suitable to those meshes obtained by iterative application of longest-edge bisection refinement. Metric properties of the SE duplication of a triangle in the region of normalised triangles endowed with the Poincare hyperbolic metric are studied. The self-improvement of this transformation is easily proven, as well as the minimum angle condition. We give a lower bound for the maximum of the smallest angles of the triangles produced by the iterative SE duplication α=π6. This bound does not depend on the shape of the initial triangle.
URI: http://hdl.handle.net/10553/118981
ISSN: 2227-7390
DOI: 10.3390/math10193643
Source: Mathematics [ISSN 2227-7390], v. 10 (19), (october 2022)
Appears in Collections:Artículos
Adobe PDF (631,13 kB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.