Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/118823
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Freire Obregón, David Sebastián | en_US |
dc.contributor.author | Lorenzo Navarro, José Javier | en_US |
dc.contributor.author | Castrillón Santana, Modesto Fernando | en_US |
dc.date.accessioned | 2022-10-13T12:03:39Z | - |
dc.date.available | 2022-10-13T12:03:39Z | - |
dc.date.issued | 2022 | en_US |
dc.identifier.isbn | 978-3-031-06432-6 | en_US |
dc.identifier.issn | 0302-9743 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/118823 | - |
dc.description.abstract | In May 2021, the site runnersworld.com published that participation in ultra-distance races has increased by 1,676% in the last 23 years. Moreover, nearly 41% of those runners participate in more than one race per year. The development of wearable devices has undoubtedly contributed to motivating participants by providing performance measures in real-time. However, we believe there is room for improvement, particularly from the organizers point of view. This work aims to determine how the runners performance can be quantified and predicted by considering a non-invasive technique focusing on the ultra-running scenario. In this sense, participants are captured when they pass through a set of locations placed along the race track. Each footage is considered an input to an I3D ConvNet to extract the participant’s running gait in our work. Furthermore, weather and illumination capture conditions or occlusions may affect these footages due to the race staff and other runners. To address this challenging task, we have tracked and codified the participant’s running gait at some RPs and removed the context intending to ensure a runner-of-interest proper evaluation. The evaluation suggests that the features extracted by an I3D ConvNet provide enough information to estimate the participant’s performance along the different race tracks. | en_US |
dc.language | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation | Re-identificación mUltimodal de participaNtes en competiciones dEpoRtivaS | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science | en_US |
dc.source | Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, v. 13233 | en_US |
dc.subject | 3304 Tecnología de los ordenadores | en_US |
dc.subject.other | Human action evaluation | en_US |
dc.subject.other | I3D ConvNet | en_US |
dc.subject.other | Sports | en_US |
dc.title | Decontextualized I3D ConvNet for Ultra-Distance Runners Performance Analysis at a Glance | en_US |
dc.type | info:eu-repo/semantics/conferenceobject | en_US |
dc.relation.conference | 21st International Conference Image Analysis and Processing (ICIAP 2022) | en_US |
dc.identifier.doi | 10.1007/978-3-031-06433-3_21 | en_US |
dc.identifier.scopus | 2-s2.0-85131150562 | - |
dc.contributor.orcid | 0000-0003-2378-4277 | - |
dc.contributor.orcid | 0000-0002-2834-2067 | - |
dc.contributor.orcid | 0000-0002-8673-2725 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.description.notas | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en_US |
dc.identifier.eisbn | 978-3-031-06433-3 | - |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 0,32 | |
dc.description.sjrq | Q3 | |
dc.description.miaricds | 10,0 | |
dc.description.ggs | 3 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 23-05-2022 | - |
crisitem.event.eventsenddate | 27-05-2022 | - |
crisitem.project.principalinvestigator | Castrillón Santana, Modesto Fernando | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2378-4277 | - |
crisitem.author.orcid | 0000-0002-2834-2067 | - |
crisitem.author.orcid | 0000-0002-8673-2725 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Freire Obregón, David Sebastián | - |
crisitem.author.fullName | Lorenzo Navarro, José Javier | - |
crisitem.author.fullName | Castrillón Santana, Modesto Fernando | - |
Appears in Collections: | Actas de congresos |
SCOPUSTM
Citations
5
checked on Nov 10, 2024
WEB OF SCIENCETM
Citations
3
checked on Nov 10, 2024
Page view(s)
49
checked on Dec 30, 2023
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.