Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/118734
Título: Morbid liver manifestations are intrinsically bound to metabolic syndrome and nutrient intake based on a machine-learning cluster analysis
Autores/as: Micó, Víctor
San-Cristobal, Rodrigo
Martín, Roberto
Martínez-González, Miguel Ángel
Salas-Salvadó, Jordi
Corella, Dolores
Fitó, Montserrat
Alonso-Gómez, Ángel M.
Wärnberg, Julia
Vioque, Jesús
Romaguera, Dora
López-Miranda, José
Estruch, Ramon
Tinahones, Francisco J.
Lapetra, José
Serra Majem, Luis 
Bueno-Cavanillas, Aurora
Tur, Josep A.
Martín Sánchez, Vicente
Pintó, Xavier
Delgado-Rodríguez, Miguel
Matía-Martín, Pilar
Vidal, Josep
Vázquez, Clotilde
García-Arellano, Ana
Pertusa-Martinez, Salvador
Chaplin, Alice
Garcia-Rios, Antonio
Muñoz Bravo, Carlos
Schröder, Helmut
Babio, Nancy
Sorli, Jose V.
Gonzalez, Jose I.
Martinez-Urbistondo, Diego
Toledo, Estefania
Bullón, Vanessa
Ruiz-Canela, Miguel
Portillo, María Puy
Macías-González, Manuel
Perez-Diaz-del-Campo, Nuria
García-Gavilán, Jesús
Daimiel, Lidia
Martínez, J. Alfredo
Clasificación UNESCO: 32 Ciencias médicas
320502 Endocrinología
3206 Ciencias de la nutrición
Palabras clave: Biomarkers
Cluster
Dyslipidemia
Glucose Disorders
Hepatic Enzymes, et al.
Fecha de publicación: 2022
Publicación seriada: Frontiers in Endocrinology 
Resumen: Metabolic syndrome (MetS) is one of the most important medical problems around the world. Identification of patient´s singular characteristic could help to reduce the clinical impact and facilitate individualized management. This study aimed to categorize MetS patients using phenotypical and clinical variables habitually collected during health check-ups of individuals considered to have high cardiovascular risk. The selected markers to categorize MetS participants included anthropometric variables as well as clinical data, biochemical parameters and prescribed pharmacological treatment. An exploratory factor analysis was carried out with a subsequent hierarchical cluster analysis using the z-scores from factor analysis. The first step identified three different factors. The first was determined by hypercholesterolemia and associated treatments, the second factor exhibited glycemic disorders and accompanying treatments and the third factor was characterized by hepatic enzymes. Subsequently four clusters of patients were identified, where cluster 1 was characterized by glucose disorders and treatments, cluster 2 presented mild MetS, cluster 3 presented exacerbated levels of hepatic enzymes and cluster 4 highlighted cholesterol and its associated treatments Interestingly, the liver status related cluster was characterized by higher protein consumption and cluster 4 with low polyunsaturated fatty acid intake. This research emphasized the potential clinical relevance of hepatic impairments in addition to MetS traditional characterization for precision and personalized management of MetS patients.
URI: http://hdl.handle.net/10553/118734
DOI: 10.3389/fendo.2022.936956
Fuente: Frontiers in Endocrinology[EISSN 1664-2392],v. 13, (Septiembre 2022)
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.