Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/118311
DC FieldValueLanguage
dc.contributor.authorMohamed Zaki Ahmed, Ayaten_US
dc.contributor.authorRodríguez Díaz, Manuelen_US
dc.date.accessioned2022-09-21T09:49:25Z-
dc.date.available2022-09-21T09:49:25Z-
dc.date.issued2022en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/118311-
dc.description.abstractOnline reputation is of great strategic importance to companies today. Customers share their emotions and experiences about the service received or the product acquired through online opinions in the form of quantitative variables or text comments. Although quantitative variables can be analyzed using different statistical methods, the main limitation of comment content analysis lies in the statistical analysis because the texts are qualitative. This study proposes and applies a methodology to develop a machine learning designed to identify the key labels related to the quantitative variables in the general rating of the service received from an airline. To this end, we create a quantitative dichotomous variable from zero to one from a database of comment title labels, thus facilitating the conversion of titles into quantitative variables. On this basis, we carry out a multiple regression analysis where the dependent variable is the overall rating and the independent variables are the labels. The results obtained are satisfactory, and the significant labels are determined, as well as their signs and coefficients with the general ratings. Findings show that the significant labels detected in titles positively influence the prediction of the overall rating of airline. This paper is a new approach to applying cluster analysis to the text content of customers’ online reviews in an airline. Thus, the proposed methodology results in a quantitative value for the labels that determines the direction and intensity of customers’ opinions. Moreover, it has important practical implications for managers to identify the weakness and the strengths of their services in order to increase their positioning in the market by developing meaningful strategies.en_US
dc.languageengen_US
dc.relation.ispartofSustainability (Switzerland)en_US
dc.sourceSustainability (Switzerland)[EISSN 2071-1050],v. 14 (15), (Agosto 2022)en_US
dc.subject531212 Transportes y comunicacionesen_US
dc.subject530401 Consumo, ahorro, inversiónen_US
dc.subject.otherAirlineen_US
dc.subject.otherArtificial Intelligenceen_US
dc.subject.otherContent Analysisen_US
dc.subject.otherKey Labelen_US
dc.subject.otherMachine Learningen_US
dc.subject.otherOnline Customer Reviewen_US
dc.subject.otherSentiment Analysisen_US
dc.subject.otherSocial Mediaen_US
dc.titleA methodology for machine-learning content analysis to define the key labels in the titles of online customer reviews with the rating evaluationen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/su14159183en_US
dc.identifier.scopus85137218841-
dc.contributor.orcid0000-0001-5538-7415-
dc.contributor.orcid0000-0003-2513-418X-
dc.contributor.authorscopusid57874477700-
dc.contributor.authorscopusid23976518500-
dc.identifier.eissn2071-1050-
dc.identifier.issue15-
dc.relation.volume14en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateAgosto 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-ECOen_US
dc.description.sjr0,664
dc.description.jcr3,9
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.ssciSSCI
dc.description.miaricds10,6
dc.description.erihplusERIH PLUS
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Organización y dirección de empresas (Management)-
crisitem.author.deptDepartamento de Economía y Dirección de Empresas-
crisitem.author.orcid0000-0003-2513-418X-
crisitem.author.parentorgDepartamento de Economía y Dirección de Empresas-
crisitem.author.fullNameMohamed Zaki Ahmed, Ayat-
crisitem.author.fullNameRodríguez Díaz, Manuel-
Appears in Collections:Artículos
Adobe PDF (620,35 kB)
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 10, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 10, 2024

Page view(s)

109
checked on Jun 15, 2024

Download(s)

45
checked on Jun 15, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.