Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/118306
Campo DC Valoridioma
dc.contributor.authorFlorido Suárez, Néstor Rubénen_US
dc.contributor.authorMirza Rosca, Julia Claudiaen_US
dc.contributor.authorGuerra Yánez, Héctoren_US
dc.contributor.authorVoiculescu,Ioneliaen_US
dc.date.accessioned2022-09-20T09:24:13Z-
dc.date.available2022-09-20T09:24:13Z-
dc.date.issued2022en_US
dc.identifier.issn2214-7853en_US
dc.identifier.urihttp://hdl.handle.net/10553/118306-
dc.description.abstractIn this study, the ability of two titanium alloys to resist corrosion has been analyzed. This was accomplished by analyzing how the corrosion potential evolves with time as well as observing the Bode and Nyquist diagrams obtained with electrochemical impedance spectroscopy. The proportions of each alloy were A1 (94.4 % Ti, 4 % Mn, 0.6 % Al, 1 % Fe) and A2 (96.5 % Ti, 3 % Mn, 0.6 % Al, 0.2 % V). The two samples were covered in epoxy resin, cut in pieces, and polished using silicon carbide sheets of abrasive paper, the polishing was done progressively, using gradings from 280 to 1200 grit, ultimately using a 0.1 alpha alumina suspension for a last polish. Electrochemical tests were performed by immersing the polished samples in a Ringer Lactate solution. While the samples were immersed, they were connected to a saturated calomel electrode as reference electrode and to a platinum electrode acting as counter electrode. The two materials can resist to the effects of corrosion efficiently; initially it seemed that the alloy A1 improves its capacity to resist at corrosion when a positive potential is applied and loses it partially when a negative potential is applied. In alloy A2 the situation was similar but easier to observe, as when the supplied potential was too high or too low, the passivation of the material was not so good.en_US
dc.languageengen_US
dc.relationCABINFR2019-07en_US
dc.relation.ispartofMaterials today: proceedingsen_US
dc.subject3314 Tecnología médicaen_US
dc.subject330307 Tecnología de la corrosiónen_US
dc.subject.otherAlloy | Biomaterial | Corrosion | EIS | Electrochemical | Titaniumen_US
dc.titleCorrosion behavior of new titanium alloys for medical applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.matpr.2022.08.112en_US
dc.identifier.scopus2-s2.0-85136092096-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.investigacionCiencias de la Saluden_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.description.numberofpages5en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,445
dc.description.sjrqQ2
dc.description.miaricds3,8
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Mecánica de los Medios Continuos y Estructuras-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.deptGIR Nanomaterials and Corrosion-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Nanomaterials and Corrosion-
crisitem.author.orcid0000-0002-1824-6792-
crisitem.author.orcid0000-0003-0623-3318-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameFlorido Suárez, Néstor Rubén-
crisitem.author.fullNameMirza Rosca, Julia Claudia-
crisitem.author.fullNameGuerra Yánez, Héctor-
crisitem.author.fullNameVoiculescu, Ionelia-
Colección:Artículos
Adobe PDF (1,77 MB)
Vista resumida

Citas SCOPUSTM   

4
actualizado el 30-mar-2025

Visitas

118
actualizado el 18-ene-2025

Descargas

55
actualizado el 18-ene-2025

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.