Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/117928
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Porzi, Lorenzo | en_US |
dc.contributor.author | Rota Buló, Samuel | en_US |
dc.contributor.author | Penate-Sanchez, Adrian | en_US |
dc.contributor.author | Ricci, Elisa | en_US |
dc.contributor.author | Moreno-Noguer, Frances | en_US |
dc.date.accessioned | 2022-09-07T17:42:25Z | - |
dc.date.available | 2022-09-07T17:42:25Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.issn | 2377-3766 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/117928 | - |
dc.description.abstract | Exploiting RGB-D data by means of convolutional neural networks (CNNs) is at the core of a number of robotics applications, including object detection, scene semantic segmentation, and grasping. Most existing approaches, however, exploit RGB-D data by simply considering depth as an additional input channel for the network. In this paper we show that the performance of deep architectures can be boosted by introducing DaConv, a novel, general-purpose CNN block which exploits depth to learn scale-aware feature representations. We demonstrate the benefits of DaConv on a variety of robotics oriented tasks, involving affordance detection, object coordinate regression, and contour detection in RGB-D images. In each of these experiments we show the potential of the proposed block and how it can be readily integrated into existing CNN architectures. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | IEEE Robotics and Automation Letters | en_US |
dc.source | IEEE Robotics and Automation Letters, v. 2 (2), p. 468 - 475 (1997) | en_US |
dc.subject.other | RGB-D perception | en_US |
dc.subject.other | Visual learning | en_US |
dc.title | Learning depth-aware deep representations for robotic perception | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/LRA.2016.2637444 | en_US |
dc.identifier.scopus | 2-s2.0-85029592770 | - |
dc.identifier.isi | WOS:000413736600013 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.description.lastpage | 475 | en_US |
dc.identifier.issue | 2 | - |
dc.description.firstpage | 468 | en_US |
dc.relation.volume | 2 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.identifier.external | 67238723 | - |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | April 2017 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.esci | ESCI | |
item.grantfulltext | restricted | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2876-3301 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Peñate Sánchez, Adrián | - |
Colección: | Artículos |
Citas SCOPUSTM
24
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
18
actualizado el 17-nov-2024
Visitas
47
actualizado el 15-jun-2024
Descargas
29
actualizado el 15-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.