Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/117928
Campo DC Valoridioma
dc.contributor.authorPorzi, Lorenzoen_US
dc.contributor.authorRota Buló, Samuelen_US
dc.contributor.authorPenate-Sanchez, Adrianen_US
dc.contributor.authorRicci, Elisaen_US
dc.contributor.authorMoreno-Noguer, Francesen_US
dc.date.accessioned2022-09-07T17:42:25Z-
dc.date.available2022-09-07T17:42:25Z-
dc.date.issued2017en_US
dc.identifier.issn2377-3766en_US
dc.identifier.urihttp://hdl.handle.net/10553/117928-
dc.description.abstractExploiting RGB-D data by means of convolutional neural networks (CNNs) is at the core of a number of robotics applications, including object detection, scene semantic segmentation, and grasping. Most existing approaches, however, exploit RGB-D data by simply considering depth as an additional input channel for the network. In this paper we show that the performance of deep architectures can be boosted by introducing DaConv, a novel, general-purpose CNN block which exploits depth to learn scale-aware feature representations. We demonstrate the benefits of DaConv on a variety of robotics oriented tasks, involving affordance detection, object coordinate regression, and contour detection in RGB-D images. In each of these experiments we show the potential of the proposed block and how it can be readily integrated into existing CNN architectures.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Robotics and Automation Lettersen_US
dc.sourceIEEE Robotics and Automation Letters, v. 2 (2), p. 468 - 475 (1997)en_US
dc.subject.otherRGB-D perceptionen_US
dc.subject.otherVisual learningen_US
dc.titleLearning depth-aware deep representations for robotic perceptionen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/LRA.2016.2637444en_US
dc.identifier.scopus2-s2.0-85029592770-
dc.identifier.isiWOS:000413736600013-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage475en_US
dc.identifier.issue2-
dc.description.firstpage468en_US
dc.relation.volume2en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.identifier.external67238723-
dc.utils.revisionen_US
dc.date.coverdateApril 2017en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.esciESCI
item.grantfulltextrestricted-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2876-3301-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNamePeñate Sánchez, Adrián-
Colección:Artículos
Unknown (1,38 MB)
Vista resumida

Citas SCOPUSTM   

24
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

18
actualizado el 17-nov-2024

Visitas

47
actualizado el 15-jun-2024

Descargas

29
actualizado el 15-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.