Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/117928
DC FieldValueLanguage
dc.contributor.authorPorzi, Lorenzoen_US
dc.contributor.authorRota Buló, Samuelen_US
dc.contributor.authorPenate-Sanchez, Adrianen_US
dc.contributor.authorRicci, Elisaen_US
dc.contributor.authorMoreno-Noguer, Francesen_US
dc.date.accessioned2022-09-07T17:42:25Z-
dc.date.available2022-09-07T17:42:25Z-
dc.date.issued2017en_US
dc.identifier.issn2377-3766en_US
dc.identifier.urihttp://hdl.handle.net/10553/117928-
dc.description.abstractExploiting RGB-D data by means of convolutional neural networks (CNNs) is at the core of a number of robotics applications, including object detection, scene semantic segmentation, and grasping. Most existing approaches, however, exploit RGB-D data by simply considering depth as an additional input channel for the network. In this paper we show that the performance of deep architectures can be boosted by introducing DaConv, a novel, general-purpose CNN block which exploits depth to learn scale-aware feature representations. We demonstrate the benefits of DaConv on a variety of robotics oriented tasks, involving affordance detection, object coordinate regression, and contour detection in RGB-D images. In each of these experiments we show the potential of the proposed block and how it can be readily integrated into existing CNN architectures.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Robotics and Automation Lettersen_US
dc.sourceIEEE Robotics and Automation Letters, v. 2 (2), p. 468 - 475 (1997)en_US
dc.subject.otherRGB-D perceptionen_US
dc.subject.otherVisual learningen_US
dc.titleLearning depth-aware deep representations for robotic perceptionen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/LRA.2016.2637444en_US
dc.identifier.scopus2-s2.0-85029592770-
dc.identifier.isiWOS:000413736600013-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage475en_US
dc.identifier.issue2-
dc.description.firstpage468en_US
dc.relation.volume2en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.identifier.external67238723-
dc.utils.revisionen_US
dc.date.coverdateApril 2017en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.esciESCI
item.grantfulltextrestricted-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2876-3301-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNamePeñate Sánchez, Adrián-
Appears in Collections:Artículos
Unknown (1,38 MB)
Show simple item record

SCOPUSTM   
Citations

24
checked on Dec 8, 2024

WEB OF SCIENCETM
Citations

18
checked on Dec 8, 2024

Page view(s)

47
checked on Jun 15, 2024

Download(s)

29
checked on Jun 15, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.